Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (2): 237-244    DOI: 10.3785/j.issn.1006-754X.2018.02.016
    
Design and realization of balanced Class E/F power amplifier
NAN Jing-chang, ZHANG Peng-jun
School of Electrics and Information Engineering, Liaoning Technical University, Huludao 125105, China
Download: HTML     PDF(2307KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problem of low efficiency and large loss of input and output return in the designing process of power amplifier, a balanced power amplifier operating in 1.5 GHz was designed. The 3 dB directional coupler was used to distribute and synthesize the RF (radio frequency) signal, which greatly reduced the voltage standing wave ratio (VSWR) of input and output node of the power amplifier, and the harmonic control network of the inverse-Class F power amplifier was introduced into the matching circuit of the Class E power amplifier. The input and output impedance of the transistor was obtained by the use of ADS for load/source pull simulation. Considering the parasitic parameters of the transistor, the second and the third harmonic were matched to open and short respectively at drain of the transistor, and the second harmonic suppression circuit was added into the input circuit to further enhance the efficiency of the power amplifier. The GaN HEMT device CGH40010F transistor was selected for ADS software circuit simulation, and Rogers4350b high-frequency material was used to produce the test board of power amplifier. After making simulation optimization and practical test to the power amplifier, measure results demonstrated that when input power was 28 dBm, the amplifier test board delivered 41.54 dBm output power with drain efficiency of 76.99% and power additional efficiency (PAE) reached 73.59%, input and output node voltage standing wave ratio was less than 2, while having a high efficiency bandwidth of 160 MHz and the maximum output power increased by 3 dB than that of the single tube amplifier. The experimental results had some difference compared with the simulation data, but there was still a good consistency to meet the design index, which verified feasibility of the design methodology. This design method improves design efficiency of the power amplifier, due to the advantages of high efficiency and low return loss, so that it has broad application prospects in present highly efficient and green energy saving RF microwave communication system.



Key wordsClass E power amplifier      inverse-Class F power amplifier      GaN      balanced structure      voltage standing wave ratio (VSWR)     
Received: 06 January 2017      Published: 28 April 2018
CLC:  TN823  
  TN722  
Cite this article:

NAN Jing-chang, ZHANG Peng-jun. Design and realization of balanced Class E/F power amplifier. Chinese Journal of Engineering Design, 2018, 25(2): 237-244.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.02.016     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I2/237


平衡式E/F类功率放大器的设计与实现

为了解决功率放大器设计过程中存在的效率低和输入/输出端回波损耗较大的问题,设计了一种工作频率为1.5 GHz的平衡式功率放大器。通过采用3 dB定向耦合器对射频信号进行分配及合成,大大降低了输入/输出端的驻波系数,并将逆F类功率放大器的谐波控制网络引入E类功率放大器的匹配电路中。使用ADS对晶体管进行负载牵引和源牵引,得到晶体管的输入/输出阻抗,同时结合晶体管的寄生参数,在输出匹配电路中对二次谐波、三次谐波分别进行开路和短路处理,且为了进一步提高功率放大器的工作性能,在输入电路结构中抑制了二次谐波。选用GaN HEMT器件CGH40010F晶体管,利用ADS软件进行电路仿真,并采用Rogers4350b高频板材制作该功率放大器的实际测试电路板。仿真优化和实测表明:在输入功率为28 dBm时,该功率放大器的输出功率为41.54 dBm,漏极效率为76.99%,功率附加效率(power additional efficiency,PAE)达到73.59%,输入/输出端驻波系数小于2,同时具有160 MHz的高效率带宽,且最大输出功率较单管功率放大器提高了3 dB。实测结果与仿真数据有一定的误差,但仍有较好的一致性,满足设计指标要求,验证了设计方法的可行性。该设计方法具有效率高和回波损耗低的优势,提高了功率放大器的设计效率,使它在当今高效绿色节能的射频微波通信系统中具有广阔的应用前景。


关键词: E类功率放大器,  逆F类功率放大器,  GaN,  平衡结构,  驻波系数 

[1] RAAB F H. Class-E, Class-C, and Class-F power amplifiers based upon a finite number of harmonics[J]. IEEE Transactions on Microwave Theory & Techniques, 2001, 49(8):1462-1468.
[2] YOU Fei, HE Song-bai, TANG Xiao-hong, et al. High-efficiency single-ended Class-E/F2 power amplifier with finite DC feed inductor[J]. IEEE Transactions on Microwave Theory & Techniques, 2010, 58(1):32-40.
[3] GREBENNIKOV Andrei, SOKAL Nathan O. Switchmode RF power amplifiers[M]. New York:Newnes, 2007:151-158.
[4] WOO Young-yun, YANG Youngoo, KIM Bumman. Analysis and experiments for high-efficiency Class-F and inverse Class-F power amplifiers[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(5):1969-1974.
[5] 章宏.高效率F类和逆F类功率放大器研究[D].合肥:合肥工业大学仪器科学与光电工程学院,2012:28-40. ZHANG Hong. The research of high-efficiency Class-F and inverse Class-F power amplifier[D]. Hefei:Hefei University of Technology, School of Instrument Science and Opto-electronics Engineering, 2012:28-40.
[6] GREBENNIKOV A. High-efficiency Class E/F lumped and transmission-line power amplifiers[J]. IEEE Transactions on Microwave Theory & Techniques, 2011, 59(6):1579-1588.
[7] 南敬昌,杜学坤.基于平衡结构的高效率E类功率放大器设计[J].微电子学,2013,43(5):593-597. NAN Jing-chang, DU Xue-kun. Design of high efficiency Class E power amplifier based on balanced structure[J]. Microelectronics, 2013, 43(5):593-597.
[8] 张凯,马晓华,韩红波,等.L波段平衡式功率放大器的设计与实现[J].电子器件,2011,34(6):672-676. ZHANG Kai, MA Xiao-hua, HAN Hong-bo, et al. Design and realization of L-band balanced power amplifier[J].Chinese Journal of Electron Devices, 2011, 34(6):672-676.
[9] LUDWIG R, BRETCHKO P. RF circuit design:theory and applications[M]. Chicago:Prentice Hall, Inc., 2000:612-619.
[10] 吴一多,陈晓光,宋汉斌.200 W平衡式脉冲功率放大器的设计与实现[J].电子器件,2010,33(4):471-475. WU Yi-duo, CHEN Xiao-guang, SONG Han-bin. Design and realization of 200 W balanced structure pulse power amplifier[J]. Chinese Journal of Electron Devices, 2010, 33(4):471-475.
[11] 曹韬,刘友江,吕立明.基于复合左右手传输线结构的多频高效功放[J].微电子学,2011,41(5):640-644. CAO Tao, LIU You-jiang,LÜ Li-ming. Multiband high efficiency power amplifier based on composite right/left-handed transmission lines[J]. Microelectronics, 2011, 41(5):640-644.
[12] GREBENNIKOV A. High-efficiency transmission-line inverse Class F power amplifiers for 2 GHz WCDMA systems[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2011, 21(4):446-456.
[13] 曹韬,刘友江,曾荣,等.S波段高效GaN逆E类功率放大器[J].微波学报,2011,27(4):49-52. CAO Tao, LIU You-jiang, ZENG Rong, et al. S-band high efficiency GaN inverse-Class E power amplifier[J]. Journal of Microwaves, 2011, 27(4):49-52.
[14] KACZMARCZYK Z. High-efficiency Class E, EF, and E/F inverters[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5):1584-1593.
[15] 郭栋,李梁,窦智童,等.基于新一代半导体GaN的高效率功率放大器的研制[J].现代电子技术,2014,37(15):83-85. GUO Dong, LI Liang, DOU Zhi-tong, et al. Development of high efficiency power-amplifier based on new generation semiconductor GaN[J]. Modern Electronics Technique, 2014, 37(15):83-85.
[16] LEE Yong-sub, JEONG Yoon-ha. A high-efficiency Class-E GaN HEMT power amplifier for WCDMA applications[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(8):622-624.
[17] 刘长军,黄卡玛,闫丽萍.射频通信电路设计[M].北京:科学出版社,2005:226-235. LIU Chang-jun, HUANG Ka-ma, YAN Li-ping. RF communication circuits design[M]. Beijing:Science Press, 2005:226-235.
[18] 王洋,刘太君,叶焱,等.逆F类高效氮化镓Doherty射频功率放大器设计[J].微波学报,2014,30(6):64-68. WNAG Yang, Liu Tai-jun, YE Yan, et al. Design of inverse Class-F high-efficiency GaN Doherty RF power amplifier[J]. Journal of Microwaves, 2014, 30(6):64-68.

[1] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[2] GAO Zhi-lai, QIU Zi-xue, REN Dong, CUI De-you, XU Xin-peng. Structure design and optimization for crossbeam of bridge gantry milling machine[J]. Chinese Journal of Engineering Design, 2019, 26(1): 56-64.
[3] YANG Sheng, LI Yan, LI Wen-qiang, LIU Long-fan. Design knowledge representation model based on 3M features[J]. Chinese Journal of Engineering Design, 2018, 25(3): 245-252.
[4] DENG Xing, YU Lan-feng, LEI Cong, XU Jiang-ping, XIAO Ze-ping. Lightweight design of trackless telescopic gantry crane based on response surface method[J]. Chinese Journal of Engineering Design, 2018, 25(3): 288-294.
[5] DENG Xing, YU Lan-feng, LEI Cong, XU Jiang-ping, XIAO Ze-ping. Research on contact problem of trackless telescopic gantry crane[J]. Chinese Journal of Engineering Design, 2018, 25(1): 79-84,93.
[6] SHI Wei-gang, YANG Bo-jun, YU Fei, LI Zuo-guo, ZHANG Er-jia. Study of trimming method based on technology evolution trends[J]. Chinese Journal of Engineering Design, 2016, 23(4): 301-308.
[7] ZHANG Qiang, WANG Hai-jian, HU Nan. Study on injury and fatigue life forecast of gantry crane's girder under rising load[J]. Chinese Journal of Engineering Design, 2015, 22(5): 461-468.
[8] WANG Yi, CHEN Qing-Xin, MAO Ning. The mould-repair knowledge finding for injection mould based on fuzzy rule induction using group method data handling[J]. Chinese Journal of Engineering Design, 2010, 17(3): 168-172.
[9] SHI Jun-You, SU Chuan-Sheng, DI Hong-Yan. Neural networks hybrid algorithm for irregular parts optimal layout[J]. Chinese Journal of Engineering Design, 2009, 16(4): 271-275.
[10] HUANG Mei-Fa, ZHANG Jing, KUANG Bing. Machining dimension type recognition based on self-organizing feature map neural network[J]. Chinese Journal of Engineering Design, 2008, 15(5): 341-346.
[11] XU Hui-Pu, MA Zi, WU De-Feng. Novel data processing scheme for 3D scattered point data in reverse engineering[J]. Chinese Journal of Engineering Design, 2008, 15(2): 128-133.
[12] QIU Lin-Jin, QIU Qing-Ying, HE Bin. Research on knowledge m odeling and its organizational strategy of complex transmitting system[J]. Chinese Journal of Engineering Design, 2002, 9(5): 251-256.
[13] ZHAO Peng-Wei, XU Guo-Hua, DOU Yong-Xiang, LIU Huai-Liang. Research on structure and reengineering of virtual organization information systems[J]. Chinese Journal of Engineering Design, 2002, 9(4): 178-182.