|
|
Singularity-free position path planning of the Gough-Stewart parallel mechanism |
LI Bao-kun1,2, HAN Ying-ge1, GUO Yong-cun1, CAO Yi3,4, WANG Cheng-jun1 |
1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China;
2. Postdoctoral Research Station of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China;
3. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
4. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China |
|
|
Abstract Singular configuration seriously affects the performance of the parallel robotic mechanisms. It is essential to further investigate the singularity-avoidance problem on the basis of obtaining the singularity distributing regularity of the mechanism. The geometric property of the singularity-locus and the singularity-free path planning of the Gough-Stewart parallel mechanism were explored. The position-singularity locus equation of the mechanism was constructed and the case that every singularity locus in the series of the moving plane was a quadratic curve with obvious geometric property was pointed out. Based on the geometric property of the singularity locus, the general discriminating method for the presence and absence of the singularity-free motion path was represented when the starting point and the object point were given. When the singularity-free motion path was existent, the implemented method for the singularity-free path was provided. The validation of the aforementioned methods was tested and verified by applying numerical examples. The investigation has important theoretical significance and practical reference value for the exploration of the singularity-avoidance of the parallel robotic mechanisms.
|
Received: 23 March 2016
Published: 28 December 2016
|
|
Gough-Stewart并联机构无奇异位置路径规划
奇异位形严重影响并联机器人机构的性能,有必要在获得机构奇异位形分布规律基础上进一步探讨机构的奇异规避问题.主要研究六自由度Gough-Stewart并联机构的奇异轨迹几何性质和无奇异路径规划.构建机构位置奇异轨迹方程,并指出机构位于一系列动平面上的位置奇异轨迹均为具有明显几何性质的二次曲线.基于上述奇异轨迹几何性质,当给定起始点和目标点时,给出机构无奇异运动路径存在与否的一般性判别方法;若存在无奇异运动路径,进一步给出机构位于动平面上的无奇异路径规划具体实现方法;以数值实例验证了上述方法的有效性.研究成果对并联机器人机构的奇异规避问题研究具有重要的理论意义和实际参考价值.
关键词:
并联机构,
奇异位形,
几何性质,
路径规划,
奇异规避
|
|
[1] 黄真,赵永生,赵铁石. 高等空间机构学[M]. 北京:高等教育出版社,2006:238-268. HUANG Zhen, ZHAO Yong-sheng, ZHAO Tie-shi. Advanced spatial mechanism[M]. Beijing:Higher Education Press, 2006:238-268.
[2] LIU G F, WU Y L, WU X Z, et al. Analysis and control of redundant parallel manipulators[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Seoul, Korea, May 21-26, 2001:3748-3754.
[3] 杨建新,余跃庆. 平面三自由度冗余并联机构的驱动奇异性分析[J]. 中国机械工程,2006,17(6):629-632. YANG Jian-xin, YU Yue-qing. Actuator singularity analysis of planar 3-DOF redundant parallel mechanisms[J]. China Mechanical Engineering, 2006, 17(6):629-632.
[4] 张彦斐,宫金良,高峰. 冗余驱动消除并联机构位形奇异原理[J]. 中国机械工程,2006,17(5):445-448. ZHANG Yan-fei, GONG Jin-liang, GAO Feng. Theory of singularity elimination by redundant actuation for parallel mechanism[J]. China Mechanical Engineering, 2006, 17(5):445-448.
[5] BOUDREAU R, NOKLEBY S. Force optimization of kinematically-redundant planar parallel manipulators following a desired trajectory[J]. Mechanism and Machine Theory, 2012, 56(10):138-155.
[6] DASH A K, CHEN I, YEO S H, et al. Workspace generation and planning singularity-free path for parallel manipulators[J]. Mechanism and Machine Theory, 2004, 40(7):776-805.
[7] BHASKAR D, MRUTHYUNJAYA T S. Singularity-free path planning for the Stewart platform manipulator[J]. Mechanism and Machine Theory, 1998, 33(6):711-725.
[8] 白志富,陈五一. 并联机构不同正解间无奇异转换问题探讨[J]. 机器人,2006,28(5):463-469. BAI Zhi-fu, CHEN Wu-yi. On the non-singular path between different forward kinematic configurations of parallel mechanism[J]. Robot/Jiqiren, 2006, 28(5):463-469.
[9] GOSSELIN C M, ANGELES J. Singularity analysis of closed-loop kinematic chains[J]. IEEE Transactions on Robotics and Automation, 1990, 6(3):281-290.
[10] CHENG Shi-li, WU Hong-tao, WANG Chao-qun, et al. A novel method for singularity analysis of the 6-SPS parallel mechanisms[J]. Science China:Technological Sciences, 2011, 54(5):1220-1227.
[11] DOYON K, GOSSELIN C M, CARDOU P. A vector expression of the constant-orientation singularity locus of the Gough-Stewart platform[J]. ASME Journal of Mechanisms and Robotics, 2013, 5(3):(034502-1)-(034502-4).
[12] BANDYOPADHYAY S, GHOSAL A. Geometric characterization and parametric representation of the singularity manifold of a 6-6 Stewart platform manipulator[J]. Mechanism and Machine Theory, 2006, 41(11):1377-1400.
[13] HUANG Zhen, CAO Yi. Property identification of the singularity loci of a class of the Gough-Stewart manipulators[J]. The International Journal of Robotics Research, 2005, 24(8):675-685.
[14] LI Hai-dong, GOSSELIN C M, RICHARD M J, et al. Analytic form of the six-dimensional singularity locus of the general Gough-Stewart platform[J]. ASME Journal of Mechanical Design, 2006, 128(1):279-287.
[15] MERLET J P. Singular configurations of parallel manipulators and Grassmann geometry[J]. The International Journal of Robotics Research, 1989, 8(5):45-56.
[16] ZHU Si J, HUANG Zhen, ZHAO M Y. Singularity analysis for six practicable 5-DOF fully-symmetrical parallel manipulators[J]. Mechanism and Machine Theory, 2009, 44(4):710-725.
[17] 张耀军,张玉茹. 基于Grassmann线几何的平面柔索驱动并联机构奇异分析[J]. 机械工程学报,2011,47(19):1-7. ZHANG Yao-jun, ZHANG Yu-ru. Singularity analysis of planar cable-driven parallel mechanisms with Grassmann geometry[J]. Journal of Mechanical Engineering, 2011, 47(19):1-7.
[18] FANG Hai-rong, FANG Yue-fa, ZHANG Ke-tao. Reciprocal screw theory based singularity analysis of a novel 3-DOF parallel manipulator[J]. Chinese Journal of Mechanical Engineering, 2012, 25(4):647-653.
[19] LIU Xin-jun, WU Chao, WANG Jin-song. A new approach for singularity analysis and closeness measurement to singularities of parallel manipulators[J]. ASME Journal of Mechanisms and Robotics, 2012, 4(4):(041001-1)-(041001-10).
[20] 沈辉,吴学忠,刘冠峰. 并联机构中奇异位形的分类与判定[J]. 机械工程学报,2004,40(4):26-31. SHEN Hui, WU Xue-zhong, LIU Guan-feng. Classification and identification of singularities of parallel mechanism[J]. Journal of Mechanical Engineering, 2004, 40(4):26-31.
[21] BEN-HORIN P, SHOHAM M. Singularity analysis of a class of parallel robots based on Grassmann-Cayley algebra[J]. Mechanism and Machine Theory, 2006, 41(8):958-970.
[22] SEMAAN A, MEHDI T M, Stéphane C, et al. Singularity analysis of 3T2R parallel mechanisms using Grassmann-Cayley algebra and Grassmann geometry[J]. Mechanism and Machine Theory, 2012, 52(7):326-340.
[23] PARK F C, KIM J W. Singularity analysis of closed kinematic chains[J]. ASME Journal of Mechanical Design, 1999, 121(1):32-38.
[24] 李保坤,曹毅,张秋菊,等. Stewart并联机构位置奇异研究[J]. 机械工程学报,2012,48(9):33-42. LI Bao-kun, CAO Yi, ZHANG Qiu-ju, et al. Position-singularity analysis of the Stewart parallel mechanism[J]. Journal of Mechanical Engineering, 2012, 48(9):33-42.
[25] HUANG T, WANG P F, MEI J P, et al. Time minimum trajectory planning of a 2-DOF translational parallel robot for pick-and-place operations[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1):365-368.
[26] 张连东,王德伦. 一种基于测地线的机器人轨迹规划方法[J]. 机器人,2004,26(1):83-86. ZHANG Lian-dong, WANG De-lun. Robot trajectory planning based on geodesics[J]. Robot/Jiqiren, 2004, 26(1):83-86.
[27] UR-REHMAN R, CARO S, CHABLAT D, et al. Multi objective path placement optimization of parallel kinematics machine based energy consumption, shaking forces and maximum actuator torques[J]. Mechanism and Machine Theory, 2010, 45(8):1125-1141. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|