Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (4): 532-541    DOI: 10.3785/j.issn.1006-754X.2025.05.105
机械零部件与装备设计     
多直径矿用钢丝绳无损检测仪的设计与开发
姚囝1,2(),杨运盛1,刘洋1,2(),叶义成1,2,冯杰3,陶潜顺1
1.武汉科技大学 资源与环境工程学院,湖北 武汉 430081
2.武汉科技大学 冶金矿产资源高效利用与造块湖北省重点实验室,湖北 武汉 430081
3.湖北省应急救援中心,湖北 武汉 430000
Design and development of non-destructive testing instrument for multi-diameter mining wire ropes
Nan YAO1,2(),Yunsheng YANG1,Yang LIU1,2(),Yicheng YE1,2,Jie FENG3,Qianshun TAO1
1.School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2.Hubei Provincial Key Laboratory of Efficient Utilization and Block Building of Metallurgical Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
3.Hubei Provincial Emergency Rescue Center, Wuhan 430000, China
 全文: PDF(6374 KB)   HTML
摘要:

针对现有矿用钢丝绳质量检测设备操作过程复杂、检测直径范围有限等问题,设计并开发了一种适用于多直径矿用钢丝绳的在线智能无损检测仪,其主要包括开环永磁磁化系统、硬件外设、应用软件及滤波算法等。根据永磁漏磁检测的物理特性,通过ANSYS Maxwell软件建立了具有开环磁路特征的永磁磁化系统二维有限元仿真模型,分析了不同提离值下磁化钢丝绳的损伤特征曲线,确定了最佳提离值。为提高降噪效果,提出了基于差值极限滤波算法的信号波形平滑处理方法。多组试验结果表明,所设计的多直径矿用钢丝绳无损检测仪能够有效识别不同直径钢丝绳的断丝损伤,损伤位置检测的平均相对误差为0.36%,具有广阔的应用前景。

关键词: 多直径矿用钢丝绳无损检测仪漏磁检测滤波算法    
Abstract:

In view of the problems of complex operation process and limited detection diameter range of existing quality inspection equipment for mining wire ropes, an on-line intelligent non-destructive testing instrument suitable for multi-diameter mining wire ropes has been designed and developed, which mainly includes an open-loop permanent magnetization system, hardware peripherals, application software and filtering algorithms. According to the physical characteristics of permanent magnetic flux leakage detection, a two-dimensional finite element simulation model of the permanent magnetization system with open-loop magnetic circuit characteristics was established through the ANSYS Maxwell software. The damage characteristic curves of the magnetized wire rope under different lift-off values were analyzed, and the optimal lift-off value was determined. In order to improve the noise reduction effect, a signal waveform smoothing processing method based on difference limit filtering algorithm was proposed. The results of multiple groups of tests show that the designed non-destructive testing instrument for multi-diameter mining wire ropes can effectively identify the broken wire damage of wire ropes with different diameters, and the average relative error of damage position detection is 0.36%, which has broad application prospects.

Key words: multi-diameter mining wire rope    non-destructive testing instrument    magnetic flux leakage detection    filtering algorithm
收稿日期: 2025-01-13 出版日期: 2025-09-01
CLC:  TG 115.28  
基金资助: 国家自然科学基金资助项目(42307237);湖北省重点研发计划项目(2020BCA082);湖北省自然科学基金青年项目(2022CFB590)
通讯作者: 刘洋     E-mail: yaonan@wust.edu.cn;liuyang@wust.edu.cn
作者简介: 姚 囝(1987—),男,副教授,博士,从事地下开采理论与工艺、矿山压力与岩层控制、地下空间工程加固技术及矿业系统工程等研究,E-mail: yaonan@wust.edu.cn,https://orcid.org/0000-0001-9246-3042
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚囝
杨运盛
刘洋
叶义成
冯杰
陶潜顺

引用本文:

姚囝,杨运盛,刘洋,叶义成,冯杰,陶潜顺. 多直径矿用钢丝绳无损检测仪的设计与开发[J]. 工程设计学报, 2025, 32(4): 532-541.

Nan YAO,Yunsheng YANG,Yang LIU,Yicheng YE,Jie FENG,Qianshun TAO. Design and development of non-destructive testing instrument for multi-diameter mining wire ropes[J]. Chinese Journal of Engineering Design, 2025, 32(4): 532-541.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.105        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/532

图1  多直径矿用钢丝绳无损检测仪整体结构
图2  钢丝绳的永磁漏磁检测原理
结构尺寸参数/mm材料
内径外径厚度
永磁体6012020NdFe35
衔铁5411080Q235钢
钢丝绳32X53钢
表1  开环永磁磁化系统有限元仿真模型关键参数
图3  开环永磁磁化系统有限元仿真模型
图4  钢丝绳的励磁回路磁力线分布
图5  钢丝绳的励磁回路磁通矢量分布图
图6  钢丝绳的励磁回路磁场强度分布
图7  提离值对漏磁场强度的影响
图8  开环永磁磁化系统结构示意
图9  多直径矿用钢丝绳无损检测仪实物图
图10  滤波处理前后的检测波形对比
图11  用户界面
图12  钢丝绳漏磁检测流程
图13  不同直径钢丝绳的损伤情况
图14  钢丝绳损伤检测现场
图15  直径为16 mm的钢丝绳单根断丝检测波形
图16  直径为28 mm的钢丝绳单根断丝检测波形
图17  直径为36 mm的钢丝绳单根断丝检测波形
图18  直径为16 mm的钢丝绳多根断丝检测波形
图19  直径为28 mm的钢丝绳多根断丝检测波形
图20  直径为36 mm的钢丝绳多根断丝检测波形
图21  钢丝绳的2处断丝位置
组别断丝位置/cm断丝距离/cm绝对误差/cm相对误差/%
第1处第2处
123.4043.5720.17-0.030.15
225.0245.1720.15-0.050.25
330.9951.1220.13-0.070.35
439.9560.2620.310.110.54
542.9163.2320.320.120.59
662.0382.3220.290.090.45
755.3175.4220.11-0.090.45
870.5890.6920.11-0.090.45
966.5886.7520.17-0.030.15
1056.5876.7320.15-0.050.25
表2  钢丝绳损伤定位结果
[1] 路正雄, 郭卫, 张传伟, 等. 平行磁化NdFeB钢丝绳无损检测仪开发[J]. 西安科技大学学报, 2021, 41(1): 139-144.
LU Z X, GUO W, ZHANG C W, et al. Development of a new wire rope non-destructive tester using parallely magnetized NdFeB[J]. Journal of Xi’an University of Science and Technology, 2021, 41(1): 139-144.
[2] 张义清, 谭继文, 朱良. 钢丝绳探伤永磁励磁装置的结构与通用性分析[J]. 煤炭工程, 2019, 51(9): 182-186.
ZHANG Y Q, TAN J W, ZHU L. Analysis of structure and universal property of permanent magnet excitation device for steel wire rope flaw detection[J]. Coal Engineering, 2019, 51(9): 182-186.
[3] 窦连城. 钢丝绳内外层断丝损伤定量识别研究[D]. 青岛: 青岛理工大学, 2021.
DOU L C. Research on quantitative identification method of internal and external broken wires in steel wire rope[D]. Qingdao: Qingdao University of Technology, 2021.
[4] ZHANG D L, ZHAO M, ZHOU Z H, et al. Characterization of wire rope defects with gray level co-occurrence matrix of magnetic flux leakage images[J]. Journal of Nondestructive Evaluation, 2013, 32(1): 37-43.
[5] 许钟奇, 杨建华, 李尚袁, 等. 钢丝绳无损检测信号处理算法的进展[J]. 无损检测, 2023, 45(11): 72-79.
XU Z Q, YANG J H, LI S Y, et al. Research progress in signal processing algorithms for nondestructive testing of steel wire ropes[J]. Nondestructive Testing Technologying, 2023, 45(11): 72-79.
[6] 宜昌市应急管理局. 宜昌龙洞湾矿业有限公司龙洞湾磷矿“3·22” 一般车辆伤害事故调查报告[EB/OL]. (2022-05-25) [2025-02-01]. .
Yichang Emergency Management. Investigation report on the "3·22" general vehicle injury accident at Longdongwan Phosphate Mine of Yichang Longdongwan Mining Company Limited[EB/OL]. (2022-05-25) [2025-02-01]. .
[7] CASEY N F, LAURA P A A. A review of the acoustic-emission monitoring of wire rope[J]. Ocean Engineering, 1997, 24(10): 935-947.
[8] 董文琪. 基于嵌入式系统的手持钢丝绳漏磁检测仪[D]. 武汉: 华中科技大学, 2019.
DONG W Q. Handheld magnetic flux leakage detector for wire ropes based on embedded system[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[9] 姜宵园. 钢丝绳在线漏磁检测探头仿真设计[D]. 武汉: 华中科技大学, 2018.
JIANG X Y. Simulation design of test probe of magnetic flux leakage for wire rope[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[10] 杨子建. 便携式的钢丝绳损伤检测仪[J]. 电子技术与软件工程, 2014(2): 140. doi:10.4028/www.scientific.net/amm.599-601.1178
YANG Z J. Portable wire rope damage detector[J]. Electronic Technology & Software Engineering, 2014(2): 140.
doi: 10.4028/www.scientific.net/amm.599-601.1178
[11] MA Y L, HE R Y, CHEN J Z. A method for improving SNR of drill pipe leakage flux testing signals by means of magnetic concentrating effect[J]. IEEE Transactions on Magnetics, 2015, 51(9): 6201607.
[12] ZHOU Z P, LIU Z L. Fault diagnosis of steel wire ropes based on magnetic flux leakage imaging under strong shaking and strand noises[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2543-2553.
[13] ZHANG D L, ZHANG E C, YAN X L. Quantitative method for detecting internal and surface defects in wire rope[J]. NDT & E International, 2021, 119: 102405.
[14] 谭继文, 战卫侠, 文妍. 钢丝绳安全检测原理与技术[M]. 北京: 科学出版社, 2009.
TAN J W, ZHAN W X, WEN Y. Principle and technology of wire rope safety detection[M]. Beijing: Beijing Science Press, 2009.
[15] KHARE A, TIWARY U S. Soft-thresholding for denoising of medical images: a multiresolution approach[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2005, 3(4): 477-496.
[16] 李晶. 矿用钢丝绳励磁结构模型及断丝定量识别研究[D]. 西安: 西安科技大学, 2021. doi:10.1155/2020/6419371
LI J. Study on excitation structure model and quantitative identification of broken wires for mine wire rope[D]. Xi'an: Xi'an University of Science and Technology, 2021.
doi: 10.1155/2020/6419371
[17] LI Y, TIAN G Y, WARD S. Numerical simulation on magnetic flux leakage evaluation at high speed[J]. NDT & E International, 2006, 39(5): 367-373.
[18] CAO Q S, LIU D, HE Y H, et al. Nondestructive and quantitative evaluation of wire rope based on radial basis function neural network using eddy current inspection[J]. NDT & E International, 2012, 46: 7-13.
[19] 张竞博. 基于Ising模型的有限尺寸无序磁系统磁场的衰减[J]. 磁性材料及器件, 2022, 53(6): 1-6.
ZHANG J B. Attenuation of magnetic field in finite size disordered system based on Ising model[J]. Journal of Magnetic Materials and Devices, 2022, 53(6): 1-6.
[20] GAO G H, QIN Y N, LIAN M J, et al. Detecting typical defects in wire ropes through wavelet analysis[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2015, 57(2): 98-105.
[21] 张守新, 李思嘉, 张瑜. 钢丝绳损伤检测信号的特征量获取方法研究[J]. 煤炭技术, 2015, 34(3): 271-273.
ZHANG S X, LI S J, ZHANG Y. Research on acquiring method of characteristics of steel wire rope damage detection signal[J]. Coal Technology, 2015, 34(3): 271-273.
[22] 李广, 蒋易帆, 范孟豹, 等. 钢丝绳局部缺陷漏磁检测信号去噪方法研究[J]. 矿山机械, 2023, 51(9): 29-34.
LI G, JIANG Y F, FAN M B, et al. Research on signal denoising method for magnetic flux leakage testing of local defects in wire ropes[J]. Mining & Processing Equipment, 2023, 51(9): 29-34.
[23] XU F Y, WANG X S, WU H T. Inspection method of cable-stayed bridge using magnetic flux leakage detection: principle, sensor design, and signal processing[J]. Journal of Mechanical Science and Technology, 2012, 26(3): 661-669.
[24] LI X, ZHANG J W, SHI J Z. A new quantitative non-destructive testing approach of broken wires for steel wire rope[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(2): 415-431.
[25] 刘耀, 刘继兵, 井陆阳, 等. 基于组合滤波的起重机钢丝绳断丝损伤漏磁信号降噪方法[J]. 机电工程, 2025, 42(5): 866-875.
LIU Y, LIU J B, JING L Y, et al. Denoising method for magnetic flux leakage signal of broken wires damage in crane steel wire rope based on combined filtering[J]. Journal of Mechanical & Electrical Engineering, 2025, 42(5): 866-875.
[26] 全国起重机械标准化技术委员会. 起重机 钢丝绳 保养、维护、检验和报废: [S]. 北京: 中国标准出版社, 2023.
National Technical Committee for Standardization of Lifting Machinery. Cranes—wire ropes—care and maintenance, inspection and discard: [S]. Beijing: Standards Press of China, 2023.
[1] 黄梓亮, 方晨昊, 欧阳小平, 杨金江, 杨华勇. 基于多信息融合的下肢外骨骼机器人感知系统研究[J]. 工程设计学报, 2018, 25(2): 159-166.