Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (5): 575-584    DOI: 10.3785/j.issn.1006-754X.2024.03.183
机械设计理论与方法     
基于螺旋接触线的五轴侧铣刀具定位方法
李忠朋1(),张立强1(),刘钢1,2,3
1.上海工程技术大学 机械与汽车工程学院,上海 201620
2.机械工业航空大型复杂薄壁构件智能制造技术重点实验室,上海 201620
3.成都智远先进制造技术研究院,四川 成都 610511
Five-axis flank milling tool positioning method based on spiral contact line
Zhongpeng LI1(),Liqiang ZHANG1(),Gang LIU1,2,3
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2.Key Laboratory of Machinery Industry for Intelligent Manufacturing of Large Complex Thin-Walled Parts, Shanghai 201620, China
3.Institute of Chengdu Zhiyuan Advanced Manufacturing Technology, Chengdu 610511, China
 全文: PDF(3565 KB)   HTML
摘要:

针对五轴侧铣加工非可展直纹面时刀具与设计曲面相互干涉的问题,提出了一种基于螺旋接触线的刀具定位方法。首先,基于Z-buffer法建立单个刀位下的误差解析模型,以评估刀具定位方法的优劣。其次,根据非可展直纹面的扭转特性,构造刀轴矢量的数学模型,同时分析刀具-工件接触线的性质及参数表达式。再次,考虑实际加工中的非线性加工误差,通过运动学变换对全局刀位进行路径插补优化。最后,基于改进两点偏置法、最小二乘法及所提出的方法进行仿真分析并对比3种方法所产生的误差,同时基于后2种方法进行实验验证。仿真和实验结果表明,所提出的方法能够有效减小侧铣加工中的原理误差,可为非可展直纹面的五轴侧铣加工提供一定的参考依据。

关键词: 五轴侧铣非可展直纹面螺旋接触线路径优化原理误差    
Abstract:

A tool positioning method based on spiral contact line is proposed to address the problem of mutual interference between tool and design surface during five-axis flank milling of undevelopable ruled surfaces. Firstly, an analytical error model under a single tool position was established based on the Z-buffer method to evaluate the advantages and disadvantages of the tool positioning method. Secondly, a mathematical model of the tool axis vector was constructed based on the torsional characteristics of the undevelopable ruled surfaces, and the properties and parametric expressions of the tool-workpiece contact line were analyzed. Thirdly, considering the non-linear machining errors in actual machining, the path interpolation optimization for the global tool position was carried out by kinematics transformation. Finally, the simulation analysis was conducted based on the improved two-point offset method, the least square method and the proposed method, and the errors generated by the three methods were compared, with the latter two methods being used for experimental verification. The simulation and experimental results show that the proposed method can effectively reduce the principle error in flank milling, which can provide a certain reference for five-axis flank milling of undevelopable ruled surfaces.

Key words: five-axis flank milling    undevelopable ruled surface    spiral contact line    path optimization    principle error
收稿日期: 2023-06-30 出版日期: 2024-10-30
CLC:  TH 161.1  
基金资助: 国家自然科学基金资助项目(51775328)
通讯作者: 张立强     E-mail: M310121104@sues.edu.cn;zhanglq@sues.edu.cn
作者简介: 李忠朋(1999—),男,硕士生,从事五轴侧铣加工路径规划研究,E-mail: M310121104@sues.edu.cn,https://orcid.org/0009-0000-9991-6630
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李忠朋
张立强
刘钢

引用本文:

李忠朋,张立强,刘钢. 基于螺旋接触线的五轴侧铣刀具定位方法[J]. 工程设计学报, 2024, 31(5): 575-584.

Zhongpeng LI,Liqiang ZHANG,Gang LIU. Five-axis flank milling tool positioning method based on spiral contact line[J]. Chinese Journal of Engineering Design, 2024, 31(5): 575-584.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.183        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I5/575

图1  基于Z-buffer法的误差模型
图2  线面布尔求交示意
图3  刀具定位示意
图4  刀轴位置确定示意
图5  刀具-工件实际接触线示意
图6  五轴侧铣加工的运动学变换
图7  基于螺旋接触线的全局刀位分布图
  
图8  非可展直纹面的扭转角变化曲线
图9  不同刀位下最大加工误差的分布规律
误差改进两点偏置法最小二乘法本文方法
极差0.102 70.078 20.028 9
eo, max-0.080 8-0.058 8-0.028 9
eu, max0.021 90.019 40
表2  不同方法下最大加工误差的对比 (mm)
图10  本文方法下最大过切误差的分布规律
图11  单个刀位下的加工误差分布规律
图12  五轴加工中心与三坐标测量仪
图13  最小二乘法下加工误差的分布云图
图14  本文方法下加工误差的分布云图
图15  本文方法下加工误差的仿真值与实测值对比( v=0.45)
1 YAO C L, HE G Y, SANG Y C, et al. Tool path regeneration in five-axis flank milling for ruled surface based on error distribution[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(13): 1751-1759.
2 庞凯瑞. 非可展直纹面侧铣加工刀路轨迹优化方法研究[D]. 天津: 天津大学, 2018.
PANG K R. Research on tool path optimization method of flank milling undevelopable ruled surface[D]. Tianjin: Tianjin University, 2018.
3 MONIES F, REDONNET J M, RUBIO W, et al. Improved positioning of a conical mill for machining ruled surfaces: application to turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2000, 214(7): 625-634.
4 张立强, 王克用, 王宇晗. 复杂曲面五轴侧铣加工的运动学优化方法[J]. 中国机械工程, 2011, 22(21): 2588-2593.
ZHANG L Q, WANG K Y, WANG Y H. Kinematical optimum method for five-axis flank milling complex surfaces[J]. China Mechanical Engineering, 2011, 22(21): 2588-2593.
5 SENATORE J, LANDON Y, RUBIO W. Analytical estimation of error in flank milling of ruled surfaces[J]. Computer-Aided Design, 2008, 40(5): 595-603.
6 LIU X W. Five-axis NC cylindrical milling of sculptured surfaces[J]. Computer-Aided Design, 1995, 27(12): 887-894.
7 REDONNET J M, RUBIO W, DESSEIN G. Side milling of ruled surfaces: optimum positioning of the milling cutter and calculation of interference[J]. The International Journal of Advanced Manufacturing Technology, 1998, 14(7): 459-465.
8 BEDI S, MANN S, MENZEL C. Flank milling with flat end milling cutters[J]. Computer-Aided Design, 2003, 35(3): 293-300.
9 MENZEL C, BEDI S, MANN S. Triple tangent flank milling of ruled surfaces[J]. Computer-Aided Design, 2004, 36(3): 289-296.
10 GONG H, CAO L X, LIU J. Improved positioning of cylindrical cutter for flank milling ruled surfaces[J]. Computer-Aided Design, 2005, 37(12): 1205-1213.
11 YAN Y C, ZHANG L Q, GAO J W. Tool path planning for flank milling of non-developable ruled surface based on immune particle swarm optimization algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(4): 1063-1074.
12 SUN S X, YAN S C, JIANG S L, et al. A high-accuracy tool path generation (HATPG) method for 5-axis flank milling of ruled surfaces with a conical cutter based on instantaneous envelope surface modelling[J]. Computer-Aided Design, 2022, 151: 103354.
13 SUN S X, SUN Y W, XU J T. Tool path generation for 5-axis flank milling of ruled surfaces with optimal cutter locations considering multiple geometric constraints[J]. Chinese Journal of Aeronautics, 2023, 36(12): 408-424.
14 PECHARD P Y, TOURNIER C, LARTIGUE C, et al. Geometrical deviations versus smoothness in 5-axis high-speed flank milling[J]. International Journal of Machine Tools and Manufacture, 2009, 49(6): 454-461.
15 GONG H, WANG N. Analytical calculation of the envelope surface for generic milling tools directly from CL-data based on the moving frame method[J]. Computer-Aided Design, 2009, 41(11): 848-855.
16 何改云, 庞凯瑞, 桑一村, 等. 曲面匹配方法在刀具加工轨迹优化中的应用[J]. 工程设计学报, 2019, 26(2): 190-196.
HE G Y, PANG K R, SANG Y C, et al. Application of surface matching method in tool path optimization[J]. Chinese Journal of Engineering Design, 2019, 26(2): 190-196.
17 陈力智, 周立峰, 王东, 等. 基于三点偏置刀位偏差补偿的五轴侧铣加工路径优化方法[J]. 制造技术与机床, 2023(3): 18-23.
CHEN L Z, ZHOU L F, WANG D, et al. Tool path optimization method for 5-axis flank milling based on deviation compensation of three-point offset cutter locations[J]. Manufacturing Technology & Machine Tool, 2023(3): 18-23.
18 CHU C H, CHEN H Y, CHANG C H. Continuity-preserving tool path generation for minimizing machining errors in five-axis CNC flank milling of ruled surfaces[J]. Journal of Manufacturing Systems, 2020, 55: 171-178.
19 邹启晓, 董雷, 曹利新. 非可展直纹面侧铣加工的最小二乘刀位规划方法[J]. 计算机集成制造系统, 2016, 22(3): 748-753.
ZOU Q X, DONG L, CAO L X. Least square positioning method of flank milling for non-developable ruled surface[J]. Computer Integrated Manufacturing Systems, 2016, 22(3): 748-753.
20 WU P H, LI Y W, CHU C H. Optimized tool path generation based on dynamic programming for five-axis flank milling of rule surface[J]. International Journal of Machine Tools and Manufacture, 2008, 48(11): 1224-1233.
21 PIEGL L A, TILLER W. The NURBS book[M]. 2nd ed. Berlin: Springer, 1997.
22 刘鹏程, 张连东, 宋雪萍. 基于测地线的移动机器人轨迹规划方法[J]. 机床与液压, 2022, 50(23): 1-5.
LIU P C, ZHANG L D, SONG X P. Method for trajectory planning of mobile robot based on geodesics[J]. Machine Tool & Hydraulics, 2022, 50(23): 1-5.
23 ZHANG P, SUN R L, HUANG T. A geometric method for computation of geodesic on parametric surfaces[J]. Computer Aided Geometric Design, 2015, 38: 24-37.
24 赵恒, 万能, 张森堂, 等. 最小非线性插补误差约束的多轴侧铣刀轴矢量优化[J]. 机床与液压, 2022, 50(8): 81-88.
ZHAO H, WAN N, ZHANG S T, et al. Cutter orientation optimization under the minimum non-linear interpolation error in multi-axis flank milling[J]. Machine Tool & Hydraulics, 2022, 50(8): 81-88.
25 JUNG Y H, LEE D W, KIM J S, et al. NC post-processor for 5-axis milling machine of table-rotating/tilting type[J]. Journal of Materials Processing Technology, 2002, 130-131: 641-646.
[1] 崔衡,马宗方,宋琳,刘超,韩怡萱. 基于连续顶点分区的混凝土3D打印路径规划算法[J]. 工程设计学报, 2024, 31(3): 271-279.
[2] 何改云, 庞凯瑞, 桑一村, 刘晨辉, 王宏亮. 曲面匹配方法在刀具加工轨迹优化中的应用[J]. 工程设计学报, 2019, 26(2): 190-196.