机械设计理论与方法 |
|
|
|
|
融合短时傅里叶变换和卷积神经网络的托辊故障诊断方法 |
谢苗1( ),孟庆爽1( ),李博2,卢进南1,李玉岐1,杨志勇1,3 |
1.辽宁工程技术大学 机械工程学院,辽宁 阜新 123000 2.辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125000 3.新疆露天矿智能生产与管控重点实验室,新疆 昌吉 831100 |
|
Idler fault diagnosis method fusing short-time Fourier transform and convolutional neural network |
Miao XIE1( ),Qingshuang MENG1( ),Bo LI2,Jinnan LU1,Yuqi LI1,Zhiyong YANG1,3 |
1.School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China 2.Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125000, China 3.Xinjiang Open-pit Mine Intelligent Production and Control Key Laboratory, Changji 831100, China |
引用本文:
谢苗,孟庆爽,李博,卢进南,李玉岐,杨志勇. 融合短时傅里叶变换和卷积神经网络的托辊故障诊断方法[J]. 工程设计学报, 2024, 31(5): 565-574.
Miao XIE,Qingshuang MENG,Bo LI,Jinnan LU,Yuqi LI,Zhiyong YANG. Idler fault diagnosis method fusing short-time Fourier transform and convolutional neural network[J]. Chinese Journal of Engineering Design, 2024, 31(5): 565-574.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.203
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I5/565
|
1 |
齐庆杰, 王欢, 董子文, 等. 矿井胶带运输巷火灾蔓延规律的数值模拟研究[J]. 中国安全科学学报, 2016, 26(10): 36-41. doi:10.16265/j.cnki.issn1003-3033.2016.10.007 QI Q J, WANG H, DONG Z W, et al. Numerical simulation of belt conveyor fire spreading law in coal mine[J]. China Safety Science Journal, 2016, 26(10): 36-41.
doi: 10.16265/j.cnki.issn1003-3033.2016.10.007
|
2 |
李铬, 李春广, 梁睦, 等. 煤矿带式输送机事故分析及防护措施[J]. 中国安全科学学报, 2006, 16(3): 140-144, 148. doi:10.3969/j.issn.1003-3033.2006.03.027 LI G, LI C G, LIANG M, et al. Accident analysis of belt conveyor used in coal mine and its protective measures[J]. China Safety Science Journal, 2006, 16(3): 140-144, 148.
doi: 10.3969/j.issn.1003-3033.2006.03.027
|
3 |
赵学智, 叶邦彦, 陈统坚. 短时傅里叶变换的时频聚集性度量准则研究[J]. 振动、测试与诊断, 2017, 37(5): 948-956, 1065. doi:10.16450/j.cnki.issn.1004-6801.2017.05.015 ZHAO X Z, YE B Y, CHEN T J. Study on measure rule of time-frequency concentration of short time Fourier transform[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(5): 948-956, 1065.
doi: 10.16450/j.cnki.issn.1004-6801.2017.05.015
|
4 |
张立智, 徐卫晓, 井陆阳, 等. 基于二维深度卷积网络的旋转机械故障诊断[J]. 机械强度, 2020, 42(5): 1039-1044. ZHANG L Z, XU W X, JING L Y, et al. Rotating machinery fault diagnosis based on two-dimensional convolution neural network[J]. Journal of Mechanical Strength, 2020, 42(5): 1039-1044.
|
5 |
付忠广, 王诗云, 高玉才, 等. 基于Mobile-VIT的旋转机械故障诊断方法[J]. 汽轮机技术, 2023, 65(2): 119-121, 86. FU Z G, WANG S Y, GAO Y C, et al. A fault diagnosis method of rotating machinery based on Mobile-VIT[J]. Turbine Technology, 2023, 65(2): 119-121, 86.
|
6 |
隆军, 吴金强. STFT和HHT在风力机轴承故障诊断中的应用[J]. 噪声与振动控制, 2013, 33(4): 219-222. doi:10.3969/j.issn.1006-1335.2013.04.045 LONG J, WU J Q. Application of short time Fourier transform and Hilbert-Huang transform in fault diagnosis of rolling bearings of windmill[J]. Noise and Vibration Control, 2013, 33(4): 219-222.
doi: 10.3969/j.issn.1006-1335.2013.04.045
|
7 |
李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131. LI H, ZHANG Q, QIN X R, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 124-131.
|
8 |
金江涛, 许子非, 李春, 等. 基于深度学习与混沌特征融合的滚动轴承故障诊断[J]. 控制理论与应用, 2022, 39(1): 109-116. doi:10.7641/CTA.2021.10177 JIN J T, XU Z F, LI C, et al. Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion[J]. Control Theory & Applications, 2022, 39(1): 109-116.
doi: 10.7641/CTA.2021.10177
|
9 |
刘慧斌, 李少波, 张安思, 等. 基于深度卷积神经网络的轴承多故障诊断研究[J]. 组合机床与自动化加工技术, 2020(5): 12-16. doi:10.1109/cac51589.2020.9326576 LIU H B, LI S B, ZHANG A S, et al. Multiple damage diagnosis of bearings based on deep convolutional neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(5): 12-16.
doi: 10.1109/cac51589.2020.9326576
|
10 |
JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345.
|
11 |
董辛旻, 韩捷, 石来德, 等. 基于矢谱和L-M神经网络的旋转机械故障诊断研究[J]. 汽轮机技术, 2009, 51(5): 372-375. DONG X M, HAN J, SHI L D, et al. Study on fault diagnosis for rotary machinery based on vector spectrum and L-M neural network[J]. Turbine Technology, 2009, 51(5): 372-375.
|
12 |
谢厚抗, 鲍久圣, 葛世荣, 等. 带式输送机承载托辊旋转阻力特性试验研究[J]. 煤炭学报, 2019, 44(): 731-736. doi:10.13225/j.cnki.jccs.2019.0902 XIE H K, BAO J S, GE S R, et al. Experimental research on rotational resistance characteristics of belt conveyor bearing idler[J]. Journal of China Coal Society, 2019, 44(): 731-736.
doi: 10.13225/j.cnki.jccs.2019.0902
|
13 |
李新华, 梁浩, 徐伟弘, 等. 常用分布式光纤传感器性能比较[J]. 光通信技术, 2007, 31(5): 14-18. LI X H, LIANG H, XU W H, et al. Comparison of characteristics of commonly-used distributed optical fiber sensors[J]. Optical Communication Technology, 2007, 31(5): 14-18.
|
14 |
徐佳杰. 基于双树复小波与宽度学习的轴承故障诊断方法研究[D]. 包头: 内蒙古科技大学, 2020: 18-20. XU J J. Research on diagnosis of bearing based on double tree complex wavelet and broad learning system [D]. Baotou: Inner Mongolia University of Science & Technology, 2020: 18-20.
|
15 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60(6): 84-90.
|
16 |
LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
|
17 |
袁铭阳. 基于深度学习的遥感影像典型目标检测算法研究[D]. 郑州: 战略支援部队信息工程大学, 2020: 17-21. YUAN M Y. Research on typical target detection algorithm of remote sensing image based on deep learning[D]. Zhengzhou: Strategic Support Force Information Engineering University, 2020: 17-21.
|
18 |
储颜雨. 基于深度残差网络的细粒度图像分类研究[D]. 南京: 南京邮电大学, 2020: 24-27. CHU Y Y. Research on fine-grained image classification based on deep residual network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020: 24-27.
|
19 |
李大柱, 牛江, 梁树林, 等. 基于多尺度时频图与卷积神经网络的车轮故障智能诊断[J]. 铁道科学与工程学报, 2023, 20(3): 1032-1043. LI D Z, NIU J, LIANG S L, et al. Intelligent wheel fault diagnosis based on multi-scale time-frequency map and convolutional neural network[J]. Journal of Railway Science and Engineering, 2023, 20(3): 1032-1043.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|