Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (4): 511-520    DOI: 10.3785/j.issn.1006-754X.2024.03.180
优化设计     
全金属硬密封双向零泄漏三偏心蝶阀设计与分析
余瑞明1(),马云艳2(),池伟2,沈宇忠2
1.上海理工大学 机械工程学院,上海 200093
2.浙江力诺流体控制科技股份有限公司,浙江 温州 325200
Design and analysis of all-metal hard sealing bidirectional zero-leakage triple eccentric butterfly valve
Ruiming YU1(),Yunyan MA2(),Wei CHI2,Yuzhong SHEN2
1.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2.Zhejiang Lenor Flow Control Technology Co. , Ltd. , Wenzhou 325200, China
 全文: PDF(4132 KB)   HTML
摘要:

针对传统三偏心蝶阀承受一定压差或全压差的反向压力等问题,研究设计了一种全金属硬密封双向零泄漏三偏心蝶阀。该蝶阀为长寿命节能型,其采用三偏心原理设计,解决了传统偏心蝶阀在开启10°、关闭瞬间密封面仍处于滑动接触摩擦的缺陷,实现了蝶阀在开启瞬间密封面即分离、关闭接触即密封的效果。首先,对所设计蝶阀的不平衡力矩和允许压差进行了理论分析,并通过流体流动仿真分析了蝶阀开度不同时阀腔内流体的压力、速度和流动迹线,得到了蝶阀出入口的最大压力和最大速度随阀门开度的变化曲线。然后,通过热应力仿真分析得到了蝶阀的热力温度和合力热流量云图,并分析了蝶阀的热应力、热应变、安全系数的分布情况以及其最大热应力随流体温度的变化曲线,验证了蝶阀的热应力满足要求。最后,开展了蝶阀阀体耐压试验和正反向高压密封试验。试验结果表明,蝶阀阀体无可见渗漏和变形,且实测泄漏量均为零,说明该蝶阀的耐压强度和密封性能均满足使用要求。研究结果为三偏心蝶阀接触和摩擦的减少、开启力矩的降低以及使用寿命的延长提供了依据,所提出的全金属硬密封结构为三偏心蝶阀的双向零泄漏密封研究提供了新思路。

关键词: 硬密封双向零泄漏三偏心蝶阀热应力仿真密封试验    
Abstract:

Aiming at the problems of the traditional triple eccentric butterfly valve to withstand a certain differential pressure or reverse pressure of full differential pressure, an all-metal hard sealing bidirectional zero-leakage triple eccentric butterfly valve is studied and designed. The valve is long-life and energy-saving, and it adopts the triple eccentric principle to solve the defect that the sealing surface of the traditional eccentric butterfly valve is still in sliding contact friction at the moment of opening 10o and closing, which realizes the effect that the sealing surface of the butterfly valve separates at the moment of opening and seals at the moment of closing contact. Firstly, the unbalanced torque and allowable differential pressure of the designed butterfly valve were analyzed theoretically, and the pressure, velocity and flow trace of the fluid in the butterfly valve chamber with different openings were analyzed through fluid flow simulation. The variation curves of the maximum pressure and maximum velocity at the inlet and outlet of butterfly valve with the valve opening were obtained. Then, the thermal temperature and resultant heat flow cloud maps of the butterfly valve were obtained through thermal stress simulation analysis, and the distribution of thermal stress, thermal strain and safety factor of the butterfly valve as well as the variation curve of its maximum thermal stress with fluid temperature were analyzed, which verified that the thermal stress of the butterfly valve met the requirements. Finally, the butterfly valve body pressure test and positive and negative high-pressure sealing test were carried out. The test results showed that there was no visible leakage and deformation of the butterfly valve body, and the measured leakage was zero, indicating that the compressive strength and sealing performance of the butterfly valve met the use requirements. The research results provide a basis for the reduction of contact and friction, the decrease of opening torque and the extension of service life of triple eccentric butterfly valves, and the proposed all-metal hard sealing structure provides a new idea for the research of bidirectional zero-leakage sealing of triple eccentric butterfly valves.

Key words: hard sealing    bidirectional zero-leakage    triple eccentric butterfly valve    thermal stress simulation    sealing test
收稿日期: 2023-06-19 出版日期: 2024-08-26
CLC:  TS 737+.3  
基金资助: 国家自然科学基金资助项目(51975379);上海市自然科学基金资助项目(19ZR1435500);上海理工大学发展基金资助项目(2020KJFZ137)
通讯作者: 马云艳     E-mail: yrm5588@163.com;mayunyan@linuovalve.com
作者简介: 余瑞明(1986—),男,浙江温州人,博士生,从事流体机械设计制造与控制研究,E-mail: yrm5588@163.com,https://orcid.org/0000-0002-9650-1023
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余瑞明
马云艳
池伟
沈宇忠

引用本文:

余瑞明,马云艳,池伟,沈宇忠. 全金属硬密封双向零泄漏三偏心蝶阀设计与分析[J]. 工程设计学报, 2024, 31(4): 511-520.

Ruiming YU,Yunyan MA,Wei CHI,Yuzhong SHEN. Design and analysis of all-metal hard sealing bidirectional zero-leakage triple eccentric butterfly valve[J]. Chinese Journal of Engineering Design, 2024, 31(4): 511-520.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.180        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I4/511

图1  全金属硬密封双向零泄漏三偏心蝶阀结构
图2  蝶板开启示意
图3  蝶阀力矩系数变化曲线
图4  蝶阀所受力矩示意图
图5  阀腔内流体计算域的网格划分
图6  开度为30%时阀腔内流体的压力云图
图7  开度为30%时阀腔内流体的速度云图
图8  开度为30%时阀腔内流体的流动迹线
图9  开度为80%时阀腔内流体的压力云图
图10  开度为80%时阀腔内流体的速度云图
图11  开度为80%时阀腔内流体的流动迹线
图12  阀腔出入口处流体的最大压力随开度的变化曲线
图13  阀腔出入口处流体的最大速度随开度的变化曲线
部件材料屈服强度/MPa
阀体WCB250
阀杆17-4PH865
金属阀座CF8205
金属密封圈316205
蝶板CF8205
环形压板SS304205
座压紧开环SS304205
定位销SS304205
表1  新型蝶阀主要部件材料的屈服强度
图14  新型蝶阀三维模型网格划分
图15  新型蝶阀的温度云图
图16  新型蝶阀的合力热流量云图
图17  新型蝶阀的热应力云图
图18  新型蝶阀的热应变云图
图19  新型蝶阀的安全系数云图
图20  新型蝶阀最大热应力随流体温度的变化曲线
图21  新型蝶阀试样
图22  新型蝶阀的液压试验台及其安装方式
图23  新型蝶阀试验现场
测试项目耐压试验高压密封试验
正向反向
保压时间/s300240240
压力/MPa2.401.801.80
保压压降/MPa000
泄漏量/(mL/min)000
表2  阀体耐压试验和正反向高压密封试验结果
1 李宁,向德华,周艳,等.pVTt法气体流量标准装置开关阀时间系统差补偿方法[J].计量学报,2021,42(8):1012-1017.
LI N, XIANG D H, ZHOU Y, et al. Compensation method of time system difference of on-off valve of pVTt gas flow standard device[J]. Acta Metrologica Sinica, 2021, 42(8): 1012-1017.
2 张利波.常用的输水系统蝶阀阀瓣密封材料分析[J].建材与装饰,2018(51):272-273.
ZHANG L B. Analysis of sealing material of butterfly valve disc in water conveyance system[J]. Construction Materials & Decoration, 2018(51): 272-273.
3 MU Y P, LIU M S, MA Z X. Research on the measuring characteristics of a new design butterfly valve flowmeter[J]. Flow Measurement and Instrumentation, 2019, 70: 101651.
4 LIN Z, YIN D P, TAO J Y, et al. Effect of shaft diameter on the hydrodynamic torque of butterfly valve disk[J]. Journal of Fluids Engineering, 2020, 142(11): 111202.
5 武德坤,杭晶烽,刘学勇.蝶阀控制系统开发及参数优化[J].仪器仪表用户,2022,29(2):87-90.
WU D K, HANG J F, LIU X Y. Butterfly valve control system development and parameter optimization[J]. Instrumentation, 2022, 29(2): 87-90.
6 宋学官,汪林,姜正浩,等.蝶阀流动特性的数值模拟及分析[J].流体机械,2008,36(5):25-29.
SONG X G, WANG L, JIANG Z H, et al. Numerical analysis of flow characteristics of butterfly valve prediction[J]. Fluid Machinery, 2008, 36(5): 25-29.
7 沈洋,金晓宏,杨科.蝶阀三维流场仿真和阀板驱动力矩求解[J].中国科技论文,2013,8(8):820-823.
SHEN Y, JIN X H, YANG K. Simulation of 3D flow field and calculation of moments on valve plate for butterfly valve[J]. China Sciencepaper, 2013, 8(8): 820-823.
8 刘健,李福堂.蝶阀流场的数值模拟及分析[J].阀门,2008(3):36-38,42.
LIU J, LI F T. Numerical simulation and analysis on flow in butterfly valve[J]. Valve, 2008(3): 36-38, 42.
9 杨岩,杨恒虎,杨长辉,等.一种新型偏心蝶阀的设计与分析[J].流体机械,2017,45(1):48-54.
YANG Y, YANG H H, YANG C H, et al. Design and analysis of a new eccentric butterfly valve[J]. Fluid Machinery, 2017, 45(1): 48-54.
10 王建峰.三偏心蝶阀密封结构及其几何参数的分析与选定[J].阀门,2012(3):31-32.
WANG J F. Application research on triple eccentric butterfly valve eccentricity parameter's choose by SolidWorks[J]. Valve, 2012(3): 31-32.
11 KWAK H S, SEONG H, KIM C. Design of laminated seal in cryogenic triple-offset butterfly valve used in LNG marine engine[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(2): 243-253.
12 PAN S W, KONG Q X. Optimization design of three eccentric metal seal butterfly valve based on finite element analysis[J]. Frontiers in Science and Engineering, 2021, 1(3): 74-80.
13 WANG H M, HU F, KONG X S, et al. Pressure fluctuation of steam on the disc in a triple eccentric butterfly valve[J]. SN Applied Sciences, 2020, 2: 1193.
14 SUN X, KIM H S, YANG S D, et al. Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve[J]. Journal of Mechanical Science and Technology, 2017, 31(6): 2839-2848.
15 余龙,俞树荣.基于敏度分析的三偏心蝶阀密封特性[J]. 化工机械,2010,37(4):428-431,468.
YU L, YU S R. Characteristics on the seals of triple off set butterfly valves based on sensitivity analysis[J]. Chemical Engineering & Machinery, 2010, 37(4): 428-431, 468.
16 董研.三偏心蝶阀密封比压分析与研究[J].阀门,2015(5):30-31,37.
DONG Y. Sealing pressure analysis and study of triple eccentric butterfly valve[J]. Valve, 2015(5): 30-31, 37.
17 杨世忠,邢丽娟.调节阀流量特性分析及应用选择[J].阀门,2006(5):33-36.
YANG S Z, XING L J. The flow characteristic analysis and application selection of regulating valve[J]. Valve, 2006(5): 33-36.
18 QIAN J Y, JIN Z J. A parametric study on unbalanced moment of piston type valve core[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2021, 22(4): 265-276.
19 SOTOODEH K. Actuator selection and sizing for valves[J]. Discover Applied Sciences, 2019, 1(10): 1207.
20 于洪涛,王宏光.三角口旋塞调节阀流量特性的数值分析[J].能源研究与信息,2019,35(3):180-185.
YU H T, WANG H G. Numerical analysis of the flow characteristic curve of the triangular cock valve[J]. Energy Research and Information, 2019, 35(3): 180-185.
21 赵才虎,陈誉,朱天龙,等.不同结构参数对高速开关阀液压力的影响研究[J].机电工程,2024,41(1):33-42.
ZHAO C H, CHEN Y, ZHU T L, et al. Influence of different structural parameters on the hydraulic pressure of high-speed switching valves[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(1): 33-42.
22 韩勖,方恒晨,孙秋花,等.屏蔽式电动闸阀阀杆及闸板设计与分析[J].大连工业大学学报,2021,40(3):202-207.
HAN X, FANG H C, SUN Q H, et al. Design and analysis of gate and valve stem for canned electric gate valve[J]. Journal of Dalian Polytechnic University, 2021, 40(3): 202-207.
[1] 况雨春,何鹏,何璟彬,魏琦,周姝文,董宗正. 牙轮钻头密封试验技术研究及密封圈性能评价[J]. 工程设计学报, 2024, 31(3): 383-392.