Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (4): 502-510    DOI: 10.3785/j.issn.1006-754X.2024.03.204
优化设计     
基于改进蜻蜓算法的磁齿轮复合电机控制研究
刘瑞1(),朱姿娜1,2(),赖磊捷1,郭中阳2
1.上海工程技术大学 机械与汽车工程学院,上海 201620
2.江苏超力电器有限公司,江苏 镇江 212300
Research on control of magnetic gear compound motor based on improved dragonfly algorithm
Rui LIU1(),Zina ZHU1,2(),Leijie LAI1,Zhongyang GUO2
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2.Jiangsu Chaoli Electric Co. , Ltd. , Zhenjiang 212300, China
 全文: PDF(3343 KB)   HTML
摘要:

针对磁齿轮复合电机双转子结构在无接触传动时出现振荡和超调的问题,提出了一种基于改进蜻蜓算法(improved dragonfly algorithm,IDA)的双闭环PI(proportional integral,比例积分)参数自整定矢量控制方法。针对DA在收敛速度和收敛精度等方面存在的不足,分别在算法寻优的前期、中期和后期引入Tent映射、改进权重系数和差分优化算法,并在其适应度函数上增加可抑制振荡和超调的惩罚项,使算法的收敛速度和收敛精度得到明显提高。采用PI、DA-PI和IDA-PI三种控制方法对磁齿轮复合电机进行控制仿真和实验,结果表明,在IDA-PI控制下电机转速的超调量和稳态误差最小,动态响应速度最快,证明了所提策略的有效性。研究结果为不同拓扑结构磁齿轮复合电机的控制提供了参考。

关键词: 磁齿轮复合电机改进蜻蜓算法参数整定矢量控制    
Abstract:

In order to solve the problem of oscillation and overshoot of double-rotor structure of magnetic gear compound motor in contactless transmission, a self-tuning vector control method for double-closed loop PI (proportional integral) parameters based on improved dragonfly algorithm (IDA) was proposed. Aiming at the shortcomings of DA in convergence speed and convergence accuracy, Tent mapping, improved weight coefficient and differential optimization algorithm were introduced in the early, middle and late stages of algorithm optimization respectively, and penalty terms that could suppress oscillation and overshoot were added to its fitness function, so that the convergence speed and convergence accuracy of the algorithm were significantly improved. Three control methods of PI, DA-PI and IDA-PI were used for the control simulation and experiment of magnetic gear compound motor. The results showed that the overshoot and steady state error of motor speed under IDA-PI control were the smallest, and the dynamic response speed was the fastest, which proved the effectiveness of the proposed strategy. The research results provide a reference for the control of magnetic gear compound motors with different topologies.

Key words: magnetic gear compound motor    improved dragonfly algorithm    parameter setting    vector control
收稿日期: 2023-10-17 出版日期: 2024-08-26
CLC:  TP 273  
基金资助: 上海市“科技创新行动计划”自然科学基金项目(21ZR1426000)
通讯作者: 朱姿娜     E-mail: liurui18251490869@163.com;zhuzina@126.com
作者简介: 刘 瑞(1998—),男,硕士生,从事磁齿轮复合电机控制研究,E-mail: liurui18251490869@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘瑞
朱姿娜
赖磊捷
郭中阳

引用本文:

刘瑞,朱姿娜,赖磊捷,郭中阳. 基于改进蜻蜓算法的磁齿轮复合电机控制研究[J]. 工程设计学报, 2024, 31(4): 502-510.

Rui LIU,Zina ZHU,Leijie LAI,Zhongyang GUO. Research on control of magnetic gear compound motor based on improved dragonfly algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(4): 502-510.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.204        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I4/502

图1  磁齿轮复合电机结构
图2  磁齿轮复合电机气隙磁场
参数数值参数数值
定子电阻/Ω1.2外转子转动惯量/ (kg·m2)0.007 538
功率/kW0.2内转子转动惯量/ (kg·m2)0.001 540
内转子极对数2直轴电感/mH7.315 2
外转子极对数10交轴电感/mH7.319 8
调磁块数12外转子永磁体磁链/Wb0.195 2
阻尼系数/(N·m·s)0.008内转子永磁体磁链/Wb0.286 4
表1  磁齿轮复合电机主要参数
图3  dq 坐标系下磁链矢量合成图
图4  PI控制框图
图5  Logistic和Tent映射的混沌序列分布
图6  改进前后惯性权重调整过程
图7  DA改进流程
图8  IDA-PI控制器结构
图9  磁齿轮复合电机双闭环PI矢量控制框图
图10  磁齿轮复合电机矢量控制系统仿真模型
图11  DA和IDA目标函数值的收敛曲线
图12  磁齿轮复合电机转速仿真曲线
图13  磁齿轮复合电机样机
图14  磁齿轮复合电机控制实验平台
图15  磁齿轮复合电机转速测量曲线
1 黄海林, 李大伟, 曲荣海, 等. 磁齿轮复合永磁电机拓扑及应用综述[J]. 电工技术学报, 2022, 37(6): 1381-1397.
HUANG H L, LI D W, QU R H, et al. A review of magnetic geared machines: Topologies and applications[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1381-1397.
2 任超. 磁齿轮啮合型双转子永磁电机传动特性研究[D]. 上海: 上海交通大学, 2017.
REN C. Study on transmission characteristics of double-rotor permanent magnet motor with magnetic gear meshing[D]. Shanghai: Shanghai Jiaotong University, 2017.
3 MIRJALILI S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053-1073.
4 池建华, 蔡延光, 李俊奕, 等. 蜻蜓算法研究综述[J]. 自动化与信息工程, 2022, 43(3): 7-14.
CHI J H, CAI Y G, LI J Y, et al. A survey of dragonfly algorithm[J]. Automation & Information Engineering, 2022, 43(3): 7-14.
5 林军, 倪宏, 孙鹏, 等. 一种采用神经网络PID控制的自适应资源分配方法[J]. 西安交通大学学报, 2013, 47(4): 112-117, 136.
LIN J, NI H, SUN P, et al. Adaptive resource allocation based on neural network PID control[J]. Journal of Xi’an Jiaotong University, 2013, 47(4): 112-117, 136.
6 COOPER J, HINDE C. Developments in applied artificial intelligence[M]. Berlin: Springer, 2003: 636-643.
7 陈宏利, 李智. 基于改进粒子群优化算法的四旋翼PID参数整定研究[J]. 科技创新与应用, 2023, 13(13): 55-58, 63.
CHEN H L, LI Z. Research on PID parameter tuning of quadrotor based on improved particle swarm optimization algorithm[J]. Technology Innovation and Application, 2023, 13(13): 55-58, 63.
8 KAUR G, ARORA S. Chaotic whale optimization algorithm[J]. Journal of Computational Design and Engineering, 2018, 5(3): 275-284.
9 STORN R, PRICE K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
10 井立兵, 柳霖, 章跃进, 等. Halbach阵列同心式磁力齿轮参数分析与优化设计[J]. 电机与控制学报, 2016, 20(3): 6-12.
JING L B, LIU L, ZHANG Y J, et al. Parameters analysis and optimization design for concentric magnetic gear with halbach permanent-magnet arrays[J]. Electric Machines and Control, 2016, 20(3): 6-12.
11 JIAN L N, CHAU K T. A coaxial magnetic gear with Halbach permanent-magnet arrays[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 319-328.
12 LUO X, NIU S. A novel contra-rotating power split transmission system for wind power generation and its dual MPPT control strategy[J]. IEEE Transactions on Power Electronics, 2016, 32 (9): 6924-6935.
13 JIAN L, CHAU K T, JIANG J Z. A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation[J]. IEEE Transactions on Industry Applications, 2009, 6(3): 954-962.
14 龙文, 伍铁斌, 唐斌. 收敛因子非线性变化的鲸鱼优化算法[J]. 兰州理工大学学报, 2017, 43(6): 102-107. doi:10.3969/j.issn.1673-5196.2017.06.020
LONG W, WU T B, TANG B. Whale optimization algorithm with nonlinearly variable convergence factor[J]. Journal of Lanzhou University of Technology, 2017, 43(6): 102-107.
doi: 10.3969/j.issn.1673-5196.2017.06.020
15 樊星男. 基于PSO的无刷直流电机PI参数自整定仿真研究[J]. 太原学院学报(自然科学版), 2022, 40(3): 45-50.
FAN X N. Simulation research of brushless DC motor PI automatic setting based on PSO[J]. Journal of Taiyuan University (Natural Science Edition), 2022, 40(3): 45-50.
16 杜涛, 曾国辉, 黄勃, 等. 基于改进飞蛾扑火优化算法的PMSM矢量控制优化[J]. 传感器与微系统, 2021, 40(5): 52-55.
DU T, ZENG G H, HUANG B, et al. PMSM vector control optimization based on improved moths to flame optimization algorithm[J]. Transducer and Microsystem Technologies, 2021, 40(5): 52-55.
17 POLYUSCHENKOV I S. Vector-controlled electric drive based on a hybrid stepper motor[J]. Russian Electrical Engineering, 2023, 94(7): 500-508.
[1] 李鸣, 胡先志, 付辉, 黄惠娟. 基于电加热炉的温度控制策略[J]. 工程设计学报, 2007, 14(6): 482-485.
[2] 颜钢锋, 李锋. 弱磁控制在变频矢量控制系统中的应用[J]. 工程设计学报, 2005, 12(2): 101-104.