Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (2): 237-246    DOI: 10.3785/j.issn.1006-754X.2022.00.025
整机和系统设计     
可变车道隔离护栏运载机器人系统及其控制策略
田为广1(),徐海黎1(),陈妍1,朱倚娴1,刘熙2
1.南通大学 机械工程学院,江苏 南通 226019
2.南通天承光电科技有限公司,江苏 南通 226100
Variable lane isolation guardrail carrier robot system and its control strategy
Wei-guang TIAN1(),Hai-li XU1(),Yan CHEN1,Yi-xian ZHU1,Xi LIU2
1.School of Mechanical Engineering, Nantong University, Nantong 226019, China
2.Nantong Tiancheng Photoelectric Technology Co. , Ltd. , Nantong 226100, China
 全文: PDF(8208 KB)   HTML
摘要:

城市潮汐交通拥堵问题可通过设置可变车道来解决。针对现有可变车道控制方式单一及智能化程度低等问题,设计了一种移动机器人来运载护栏,以完成车道隔离。为解决室外道路环境下的高精度定位问题,结合实际应用场景,应用超宽带(ultra wide band, UWB)技术设计了无线定位系统以及双标签融合定位法,实现了运载机器人运行过程中的位姿计算。根据运载机器人的位姿信息以及其搭载护栏时的运动模型,设计了相应的运动控制算法,以使机器人在运行过程中完成自主纠偏。此外,运载机器人运行过程中的相关数据通过LoRa(long range radio,远距离无线电)组网与远程服务器交互,实现了远程监控。试验结果表明:所设计的UWB定位系统的重复定位精度为0.07 m左右,能满足室外环境下的高精度定位要求;所设计的运动控制算法能较好地实现运载机器人的运动控制,达到了预期效果。该运载机器人系统能够为可变车道的智能化控制提供参考,具有良好的工程应用前景。

关键词: 可变车道运载机器人超宽带(UWB)定位运动控制自主纠偏    
Abstract:

The urban tidal traffic congestion problem can be solved by setting up variable lanes. Aiming at the problem of single control mode and low intelligence of variable lanes, a mobile robot was designed to carry guardrails to complete the lane isolation.In order to solve the high-precision positioning problem in the outdoor road environment, combined with the actual application scenario, a wireless positioning system and double label fusion positioning method were designed by using the ultra wide band (UWB) technology, which realized the position and gesture calculation for the carrier robot during operation. According to the position and gesture information of the carrier robot and its motion model when loading guardrails, the corresponding motion control algorithm was designed to enable the robot to complete the automatic deviation correction during operation.In addition, the relevant data during the carrier robot operation interacted with the remote server through the LoRa (long range radio) networking to realize remote monitoring. The test results showed that the repeated positioning accuracy of the designed UWB positioning system was about 0.07 m, which could meet the requirements of high-precision positioning in the outdoor environment; the designed motion control algorithm could relatively better realize the motion control of the carrier robot and achieve expected effect. The carrier robot system can provide reference for the intelligent control of variable lanes, and has a good engineering application prospect.

Key words: variable lane    carrier robot    ultra wide band (UWB) positioning    motion control    automatic deviation correction
收稿日期: 2021-04-30 出版日期: 2022-05-06
CLC:  TH 39  
基金资助: 国家自然科学基金资助项目(61903204)
通讯作者: 徐海黎     E-mail: twguang945@163.com;87353319@qq.com
作者简介: 田为广(1997—),男,江苏盐城人,硕士生,从事机电系统智能控制与信息处理、嵌入式技术应用研究,E-mail:twguang945@163.comhttps://orcid.org/0000-0001-9060-7284
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田为广
徐海黎
陈妍
朱倚娴
刘熙

引用本文:

田为广,徐海黎,陈妍,朱倚娴,刘熙. 可变车道隔离护栏运载机器人系统及其控制策略[J]. 工程设计学报, 2022, 29(2): 237-246.

Wei-guang TIAN,Hai-li XU,Yan CHEN,Yi-xian ZHU,Xi LIU. Variable lane isolation guardrail carrier robot system and its control strategy[J]. Chinese Journal of Engineering Design, 2022, 29(2): 237-246.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.025        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I2/237

图1  运载机器人系统总体架构
图2  运载机器人搭载护栏时的整体结构
图3  运载机器人控制系统的硬件架构
图4  UWB定位系统坐标系示意
图5  UWB标签2与UWB基站的位置示意
图6  UWB标签定位坐标解算处理流程
图7  运载机器人闭环控制方法
图8  运载机器人搭载护栏时的运动模型示意
图9  运载机器人运行偏差允许区间示意
图10  运载机器人运动控制示意
图11  运载机器人运动控制流程
图12  运载机器人系统功能测试实验场地
图13  UWB定位系统静态定位测试结果
UWB标签真实坐标/m解算坐标(平均值)/m平均定位误差/m最大定位误差/m
标签1(10.5, 2.5)(10.493, 2.516)0.0170.059
标签2(12.5, 2.5)(12.516, 2.482)0.0240.067
表1  UWB定位系统的静态定位误差
图14  搭载护栏的运载机器人实物
图15  运载机器人运动控制实验结果
1 曹辉.潮汐车道智能控制方法研究[D].淄博:山东理工大学,2019:1-2. doi:10.27276/d.cnki.gsdgc.2019.000258
CAO Hui. Research on intelligent control method of tidal lane[D]. Zibo: Shandong University of Technology, 2019: 1-2.
doi: 10.27276/d.cnki.gsdgc.2019.000258
2 刘鹏,刘英舜.潮汐式交通特性分析及应对措施研究[J].交通科技与经济,2011,13(3):92-94. doi:10.3969/j.issn.1008-5696.2011.03.028
LIU Peng, LIU Ying-shun. Study on characters of tidal transportation and relieve measures[J]. Technology & Economy in Areas of Communications, 2011, 13(3): 92-94.
doi: 10.3969/j.issn.1008-5696.2011.03.028
3 戴昕.城市主干线潮汐车道交通流特性及设置方法研究[D].西安:长安大学,2018:4-8.
DAI Xin. Study on the characteristics and setting method of the tidal lane traffic flow in the main trunk line of the city[D]. Xi’an: Chang’an University, 2018: 4-8.
4 曾昕,徐建军,吴志周.基于可变车道的交叉口时空资源优化配置[J].交通信息与安全,2018,36(6):81-89. doi:10.3963/j.issn.1674-4861.2018.06.011
ZENG Xin, XU Jian-jun, WU Zhi-zhou. An optimization of space and time resource for intersections using variable lanes[J]. Journal of Transport Information and Safety, 2018, 36(6): 81-89.
doi: 10.3963/j.issn.1674-4861.2018.06.011
5 史峰,苏焕银,王雄.适用于路网潮汐流的可变车道设置方法研究[J].交通运输系统工程与信息,2015,15(4):57-62. doi:10.3969/j.issn.1009-6744.2015.04.009
SHI Feng, SU Huan-yin, WANG Xiong. Design of reversible lanes with tidal flow on road network[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(4): 57-62.
doi: 10.3969/j.issn.1009-6744.2015.04.009
6 徐红领,于泉.可变车道的国内外研究现状及展望[J].交通标准化,2014,42(15):64-67. doi:10.16503/j.cnki.2095-9931.2014.15.016
XU Hong-ling, YU Quan. Present situation and prospect of variable lane research at home and abroad[J]. Transportation Standardization, 2014, 42(15): 64-67.
doi: 10.16503/j.cnki.2095-9931.2014.15.016
7 WU Jia-ming, LIU Pan, TIAN Zong-zhong, et al. Operational analysis of the contraflow left-turn lane design at signalized intersections in China[J]. Transportation Research Part C, 2016, 69: 228-241. doi:10.1016/j.trc.2016.06.011
doi: 10.1016/j.trc.2016.06.011
8 徐洪峰,高霜霜,郑启明,等.信号控制交叉口的复合动态车道管理方法[J].吉林大学学报(工学版),2018,48(2):430-439. doi:10.13229/j.cnki.jdxbgxb20170079
XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, et al. Hybrid dynamic lane operation at signalized intersection[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 430-439.
doi: 10.13229/j.cnki.jdxbgxb20170079
9 刘杰,李阳,刘备.基于潮汐车道与灯光护栏对动态治理城市拥堵的研究设计[J].智能城市,2019,5(4):86-87. doi:10.19301/j.cnki.zncs.2019.04.049
LIU Jie, LI Yang, LIU Bei. Research and design of dynamic control of urban congestion based on tidal lanes and light guardrails[J]. Intelligent City, 2019, 5(4): 86-87.
doi: 10.19301/j.cnki.zncs.2019.04.049
10 刘新建.自走式智能护栏在“潮汐”交通中的应用[J].工程建设与设计,2016(7):121-123. doi:10.1109/icscse.2016.0055
LIU Xin-jian. Application of self-propelled smart fence in ‘tide’ transportation[J]. Construction & Design for Engineering, 2016(7): 121-123.
doi: 10.1109/icscse.2016.0055
11 LI Meng. The development of a versatile movable barrier solution[J]. MATEC Web of Conferences, 2020, 308: 03005. doi:10.1051/matecconf/202030803005
doi: 10.1051/matecconf/202030803005
12 王钦北,忻宇,张志雄,等.一种可改变潮汐车道宽度的智能隔离墩的控制方案[J].数字技术与应用,2018,36(4):13-15. doi:10.19695/j.cnki.cn12-1369.2018.04.07
WANG Qin-bei, XIN Yu, ZHANG Zhi-xiong, et al. A control method of automatic moving road barrier in tidal lane[J]. Digital Technology & Application, 2018, 36(4): 13-15.
doi: 10.19695/j.cnki.cn12-1369.2018.04.07
13 黄克彪.基于动态流量数据的可变导向车道控制系统研究[J].无线互联科技,2019,16(14):121-123. doi:10.3969/j.issn.1672-6944.2019.14.055
HUANG Ke-biao. Research on variable guide lane control system based on dynamic flow data[J]. Wireless Internet Technology, 2019, 16(14): 121-123.
doi: 10.3969/j.issn.1672-6944.2019.14.055
14 杨清华,王渝文,孙昕,等.基于物联网的可旋转式潮汐道路智能升降桩[J].内蒙古科技与经济, 2018(9):85. doi:10.3969/j.issn.1007-6921.2018.09.047
YANG Qing-hua, WANG Yu-wen, XUN Xin, et al. Rotatable tidal road intelligent lifting pile based on Internet of things[J]. Inner Mongolia Science Technology & Economy, 2018(9): 85.
doi: 10.3969/j.issn.1007-6921.2018.09.047
15 童凯翔,周轩,李广侠,等.超宽带在无线定位技术中的应用综述[J].导航定位学报,2015,3(1):10-14. doi:10.3969/j.issn.2095-4999.2015.01.003
TONG Kai-xiang, ZHOU Xuan, LI Guang-xia, et al. A review of UWB applications in wireless location technology[J]. Journal of Navigation and Positioning, 2015, 3(1): 10-14.
doi: 10.3969/j.issn.2095-4999.2015.01.003
16 曾玲,彭程,刘恒.基于信号到达时间差的超宽带室内定位算法[J].计算机应用,2018,38(S1):135-139.
ZENG Ling, PENG Cheng, LIU Heng. UWB indoor positioning algorithm based on time difference of arrival[J]. Journal of Computer Applications, 2018, 38(S1): 135-139.
17 王真诚,刘力坤,李晓龙,等.UWB高精度定位技术研究及其应用[J].城市勘测,2020(4):65-69,73. doi:10.3969/j.issn.1672-8262.2020.04.014
WANG Zhen-cheng, LIU Li-kun, LI Xiao-long, et al. Research on high precision positioning technology of UWB and application[J]. Urban Geotechnical Investigation & Surveying, 2020(4): 65-69, 73.
doi: 10.3969/j.issn.1672-8262.2020.04.014
18 杨亚静.室外UWB精确定位系统的研究与实现[D].石家庄:河北科技大学,2015:51-53.
YANG Ya-jing. Research and implementation of the outdoor UWB accurate location system[D]. Shijiazhuang: Hebei University of Science and Technology, 2015: 51-53.
19 游小荣,裴浩,霍振龙.一种基于UWB的三边定位改进算法[J].工矿自动化,2019,45(11):19-23. doi:10.13272/j.issn.1671-251x.2019050081
YOU Xiao-rong, PEI Hao, HUO Zhen-long. An improved trilateral positioning algorithm based on UWB[J]. Industry and Mine Automation, 2019, 45(11): 19-23.
doi: 10.13272/j.issn.1671-251x.2019050081
20 盛坤鹏,王坚.超宽带NLOS测距误差改正模型[J].北京测绘,2020,34(2):250-254. doi: 10.19580/j.cnki.1007-3000.2020.02.025
SHENG Kun-peng, WANG Jian. Error correction model of ultra-wideband NLOS ranging[J]. Beijing Surveying and Mapping, 2020, 34(2): 250-254.
doi: 10.19580/j.cnki.1007-3000.2020.02.025
[1] 丁杨,张明路,焦鑫,李满宏. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.
[2] 张春燕,江毅文,杨杰,蒋新星. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
[3] 尚志武, 周湘平, 李成. 高精度小型酶联免疫分析仪微量进样系统设计[J]. 工程设计学报, 2018, 25(5): 597-606.
[4] 倪健, 杨预立, 邢强, 徐海黎. 基于LabVIEW的多通道视觉测速系统设计[J]. 工程设计学报, 2018, 25(2): 209-215.
[5] 陈婵娟, 袁 斌. 新型陶瓷快速成型装置数控系统的研究[J]. 工程设计学报, 2009, 16(5): 335-339.
[6] 刘祚时, 邝先验, 吴翠琴. 基于模糊PID的足球机器人运动控制研究[J]. 工程设计学报, 2006, 13(4): 224-227.
[7] 盛忠起, 蔡光起. 基于虚轴机床的检测系统设计[J]. 工程设计学报, 2001, 8(3): 135-138.