Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (5): 607-616    DOI: 10.3785/j.issn.1006-754X.2018.05.016
通用零部件设计     
零初始索力自复位耗能器的工作性能分析
孙香红, 袁玉杰, 张卓, 郭潇洒
长安大学 建筑工程学院, 陕西 西安 710061
Working performance analysis of zero initial cable tension self-resetting energy dissipation devices
SUN Xiang-hong, YUAN Yu-jie, ZHANG Zhuo, GUO Xiao-sa
School of Architectural Engineering, Chang'an University, Xi'an 710061, China
 全文: PDF(4203 KB)   HTML
摘要:

在结构中安装传统耗能器,能够获得较好的耗能效果,但地震时的耗散能量会使它变形过大而不能继续工作,在震后往往需要更换,修复成本较高;同时其构件也会发生不同程度的损伤,难以恢复到正常使用状态。针对普通耗能器的不足,设计了一种零初始索力自复位耗能器,它由传动装置、碟形弹簧复位装置和双剪型摩擦耗能装置组成。首先,介绍了复位装置和耗能装置的构造及该自复位耗能器工作原理,并建立其力学模型。其次,采用有限元软件ABAQUS建立该耗能器复位装置和耗能装置的有限元模型,对比分析俩装置的模拟滞回曲线与理论滞回曲线,结果表明模拟曲线与理论曲线吻合较好。恢复力曲线具有典型的胡克定律特征,表明该复位装置弹性较好,能够提供稳定的恢复力。然后,分别在4种工况下对摩擦耗能装置滑动摩擦力的理论值、模拟值及试验值进行对比分析,其滞回曲线具有典型的库伦摩擦定律特性,说明该耗能装置能够提供稳定的滑动摩擦力。最后,在位移加载下对该自复位耗能器的滞回曲线和骨架曲线进行对比分析,结果表明:该自复位耗能器具有较好的耗能性能与复位性能。零初始索力自复位耗能器结构简单,原理明确,性能优良,安装方便,适应性强,可在框架结构中推广使用。

关键词: 自复位耗能装置性能分析    
Abstract:

Installing the ordinary energy dissipator can achieve better energy dissipation capacity in the structure. However, Energy dissipators help structures dissipate energy at the expense of their own deformation during earthquakes, and often need to be replaced after earthquakes, which results in higher repair costs. Also, the structures will appear to damage with varying degree, so it is difficult to resume normal use. A new type of zero initial cable tension self-resetting energy dissipation devices (ZTSEDD) which consisted of a transmission device (TD),a discspring reset device (DSRD) and a double shear friction energy dissipation device (DSFEDD) was proposed considering the above disadvantages. Firstly, the structure of DSRD, DSFEDD and the working principle of ZTSEDD were introduced, and their mechanical models were established. Secondly, the finite element model of DSRD and DSFEDD were established respectively by the finite element software ABAQUS. The simulated hysteresis curve and the theoretical hysteresis curve of the DSRD and the DSFEDD were compared, and the simulated curve and theoretical curve matched well. Restoring force curve had characteristic of Hooke law, which indicated that DSRD could provide stable restoring force due to better elasticity. Then, theoretical value, simulating value, and experimental value of sliding friction force were compared and analyzed under four working conditions. Hysteretic curve had characteristic of typical Coulomb's Friction Law, which showed that DSFEDD could provide stable sliding friction force. Finally, the hysteretic curve and skeleton curve of the ZTSEDD under displacement loading were compared and analyzed. The results indicated that the ZTSEDD had better energy dissipation performance and reset performance. The research results show that the ZTSEDD is simple in structure, clear in principle, excellent in performance, convenient in installation and adaptable in use. It can be widely used in frame structure.

Key words: self-resetting    energy dissipation devices    performance analysis
收稿日期: 2017-11-29 出版日期: 2018-10-28
CLC:  TH212  
基金资助:

中国博士后科学基金资助项目(2016M592732)

通讯作者: 袁玉杰(1993-),女,河南周口人,硕士生,从事工程结构抗震减震研究,E-mail:15029287701@163.com,https://orcid.org//0000-0001-5613-5092     E-mail: 15029287701@163.com
作者简介: 孙香红(1974-),女,陕西华阴人,副教授,硕士生导师,博士,从事工程结构抗震减震与智能控制研究,E-mail:sunxh@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙香红
袁玉杰
张卓
郭潇洒

引用本文:

孙香红, 袁玉杰, 张卓, 郭潇洒. 零初始索力自复位耗能器的工作性能分析[J]. 工程设计学报, 2018, 25(5): 607-616.

SUN Xiang-hong, YUAN Yu-jie, ZHANG Zhuo, GUO Xiao-sa. Working performance analysis of zero initial cable tension self-resetting energy dissipation devices[J]. Chinese Journal of Engineering Design, 2018, 25(5): 607-616.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.05.016        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I5/607

[1] SABELLI R, MAHIN S, CHANG C. Seismic demands on steel braced frame buildings with buckling-restrained braces[J]. Engineering Structures, 2003, 25(5):655-666.
[2] KIGGINS S, UANG C M. Reducing residual drift of buckling-restrained braced frames as a dual system[J]. Engineering Structures, 2006, 28(11):1525-1532.
[3] KAWASHIMA K, MACRAE G A, HOSHIKUMA J I, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5):523-530.
[4] MCCORMICK J, ABURANO H, IKENAGA M, et al. Permissible residual deformation levels for building structures considering both safety and human elements[C]//Proceedings of the 14th World Conference on Earthquake Engineering. Beijing:Seismological Press, 2008:12-17.
[5] CHRISTOPOULOS C. Seismic response of self-centering hysteretic SDOF systems[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(5):1131-1150.
[6] CHRISTOPOULOS C, TREMBLAY R, KIM H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Etructural Engineering, 2008, 134(1):96-107.
[7] 池沛,董军,彭洋,等.一种新型自复位耗能拉索支撑的理论研究与数值分析[J].振动与冲击,2016,35(21):171-176,219. CHI Pei, DONG Jun, PENG Yang, et al. Theoretical analysis and numerical simulation for an innovative self-centering energy-dissipative tension-brace system[J]. Journal of Vibration and Shock, 2016, 35(21):171-176, 219.
[8] 张爱林,叶全喜,詹欣欣,等.装配式零初始索力摩擦耗能复位支撑受力机理分析[J].东南大学学报(自然科学版),2017,47(1):142-149. ZHANG Ai-lin, YE Quan-xi, ZHAN Xin-xin, et al. Force mechanism analysis of fabricated friction dissipation re-centering brace with zero initial cableforce[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(1):142-149.
[9] 王涛,黄俊奎,孟丽岩,等.弹簧式自复位防屈曲支撑的抗震性能[J].黑龙江科技大学学报,2015,25(5):557-564. WANG Tao, HUANG Jun-kui, MENG Li-yan, et al. Study on seismic performance of self-centering buckling-restrained brace with springs[J]. Journal of Heilongjiang of Science & Technology, 2015, 25(5):557-564.
[10] 周中哲,陈映全.钢造双核心自复位斜撑发展与耐震试验:应用复合纤维材料棒为预力构件[J].土木工程学报,2012,45(S2):202-206. ZHOU Zhong-zhe, CHEN Ying-quan. Development and seismic tests of steel dual-core self-centering braces:fiber-reinforced polymer composites as post-tensioning tendons[J]. China Civil Engineering Journal, 2012, 45(S2):202-206.
[11] CHOU C C, CHEN Y C, CHUNG P T, et al. Low-damage earthquake-resisting systems using sandwiched buckling-restrained braces and dual-core self-centering braces[J]. Applied Mechanics & Materials, 2013, 353-356:1946-1958.
[12] OZBULUT O E, HURLEBAUS S. Application of an SMA-based hybrid control device to 20-story nonlinear benchmark building[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(13):1831-1843.
[13] 姜膺,黄志福,周冀平,等.碟形弹簧:GB/T 1972-2005[S].北京:中国标准出版社,2005:10-23. JIANG Ying, HUANG Zhi-ping, ZHOU Ji-ping, et al. Disc springs:GB/T 1972-2005[S]. Beijing:China Standards Press, 2005:10-23.
[14] 郭子雄,张鹏,黄群贤,等.长孔螺栓板式摩擦耗能器滞回性能试验研究[J].福州大学学报(自然科学版),2013,41(4):622-628. GUO Zi-xiong, ZHANG Peng, HUANG Qun-xian, et al. Experimental research on behavior of slotted-bolted-plate friction damper device[J]. Journal of Fuzhou University (Natural Science Edition), 2013, 41(4):622-628.
[15] 黄世敏,王亚勇,戴国莹,等.建筑抗震设计规范:GB 50011-2010[S].北京:中国计划出版社,2010:43-47. HUANG Shi-min, WANG Ya-yong, DAI Guo-ying, et al. Code for seismic design of building:GB 50011-2010[S]. Beijing:China Planning Press, 2010:43-47.
[16] 中华人民共和国住房和城乡建设部.钢结构设计规范:GB 50017-2010[S].北京:中国计划出版社,2010:67-82. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of steel structures:GB 50017-2010[S]. Beijing:China Planning Press, 2010:67-82.
[17] ESMAEILY A, XIAO Y. Behavior of reinforced concrete columns under variable axial loads:analysis[J]. ACI Structual Journal, 2005, 102(5):736-744.
[1] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[2] 黄秋波, 岳 杰, 徐维胜. 一种液压机械无级变速器的性能及动平衡分析[J]. 工程设计学报, 2006, 13(6): 396-399.