Please wait a minute...
工程设计学报  2016, Vol. 23 Issue (5): 409-416    DOI: 10.3785/j.issn.1006-754X.2016.05.002
保质设计     
基于相平面方法的车辆稳定性控制
柳江1, 陈朋1, 李道飞2
1. 青岛理工大学汽车与交通学院, 山东 青岛 266520;
2. 浙江大学动力机械及车辆工程研究所, 浙江 杭州 310027
Vehicle stability control based on phase-plane method
LIU Jiang1, CHEN Peng1, LI Dao-fei2
1. School of Automobile and Transportation, Qingdao University of Technology, Qingdao 266520, China;
2. Institute of Power Machinery and Vehicle Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3935 KB)   HTML
摘要:

针对车辆的稳定性问题,基于相平面理论,通过建立二自由度车辆的扩展模型以及运用简化的魔术公式对实际的轮胎侧向力进行拟合,获得了相平面图并划分稳定的区域;研究路面附着系数和车速对相平面边界的影响,确定质心侧偏角与质心侧偏角速度β-β相平面及质心侧偏角与横摆角速度β-r相平面的边界函数,提出一种车辆稳定性控制方法.在建立的Simulink与Carsim联合仿真平台上,对所设计的控制器进行验证,当系统相轨迹超出稳定区域时,以稳定边界为控制目标,控制器集成2种相平面图计算所需要的横摆力矩,将不稳定的状态拉到稳定区域,从而实现了车辆稳定性的控制.最后,与受2种单一相平面控制、横摆角速度控制和未控制的车辆进行对比,结果表明:所设计的集成控制器有一定的优势,能够显著提高极限工况下车辆的稳定性.

关键词: 相平面方法边界函数稳定性横摆力矩控制    
Abstract:

Aiming at the stability problems of vehicles,by establishing an extended two degrees of freedom vehicle model and using simplified Magic Formula to fit the practical tire lateral force,the stable zone boundaries of phase-plane were acquired based on phase plane theory. After studying the effects of the road frictional coefficient and vehicle speed on the phase plane of boundary,the boundary functions of the sideslip angle-sideslip angle rate called β-β phase plane and the sideslip angle-yaw rate called β-r phase plane were determined and the vehicle stability control method was put forward.The control strategy was validated on the co-simulation platform based on Simulink and Carsim,when the system phase trajectory got out of the stability region,the stability controller would calculate the required yaw moment by combining β-β phase plane with β-r phase plane,to limit the system within the stability boundary,and thus pulled the unstable states to the stable zone.Finally,by comparing with the two phase plane controllers,yaw rate method and the uncontrolled case,the results showed that the integrated control method had a certain advantage and could improve vehicle stability under extreme condition obviously.

Key words: phase-plane method    boundary function    stability    yaw moment control
收稿日期: 2015-10-13 出版日期: 2016-10-28
CLC:  U46  
基金资助:

国家自然科学基金资助项目(51575288,51205345);中央高校基本科研业务费专项资金资助项目(2015QNA4014);浙江省教育厅项目(Y201121739);浙江省重点科技创新团队项目(2011R50008).

通讯作者: 李道飞(1981-),男,浙江江山人,副教授,博士,从事车辆系统动力学与车辆控制研究,E-mail:dfli@zju.edu.cn.     E-mail: dfli@zju.edu.cn
作者简介: 柳江(1976-),男,山东青岛人,副教授,博士,从事车辆系统动力学与车辆控制研究,E-mail:zeh@163.com.http://orcid.org//0000-0002-2541-7131
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
柳江
陈朋
李道飞

引用本文:

柳江, 陈朋, 李道飞. 基于相平面方法的车辆稳定性控制[J]. 工程设计学报, 2016, 23(5): 409-416.

LIU Jiang, CHEN Peng, LI Dao-fei. Vehicle stability control based on phase-plane method. Chinese Journal of Engineering Design, 2016, 23(5): 409-416.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2016.05.002        https://www.zjujournals.com/gcsjxb/CN/Y2016/V23/I5/409

[1] Van ZANTEN A T. Bosch ESP systems: 5 years of experience[J]. SAE Technical Paper, 2002, 2000-01-1633.
[2] NAOTO O, TAKEHIRO H, OSAMU Y, et al. Brake torque sensing for enhancement of vehicle dynamics control systems[J]. SAE Technical Paper, 2007, 2007-01-0867.
[3] ZHANG Lei, LIANG Yao-yu, PAN Ning, et al. Vehicle direct yaw moment control based on tire cornering stiffness estimation[C]//Procedings of the ASME 2014 Dynamics Systems and Control Conference.San Antonio, October 22-24,2014: 2-8.
[4] 胡延平,陈无畏,刘翔宇,等.基于非线性直接横摆力矩控制的ESP研究[J].汽车工程,2013, 35(5): 424-429. HU Yan-ping, CHEN Wu-wei, LIU Xiang-yu, et al. A study on electronic stability program based on nonlinear direct yaw-moment control[J]. Automotive Engineering, 2013, 35(5): 424-429.
[5] SAMSUNDAR J, HUSTON J. Estimating lateral stability region of a nonlinear 2 degree-of-freedom vehicle[J]. SAE Technical Paper, 1988, 981172.
[6] PACEJKA H B. Tire and vehicle dynamics[M]. Oxford: Butterworth-Heinemann,2002: 46-50.
[7] 郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011: 42-57. GUO Kong-hui. Vehicle handling dynamics[M]. Nanjing: Jiangsu Science Technology Press, 2011: 42-57.
[8] GUO K. A study of a phase plane representation for identifying vehicle behavior[J]. Vehicle Ststem Dynamics, 1986, 14(1): 152-167.
[9] ONO E, HOSEO S. Bifurcation in vehicle dynamics and robust front wheel steering control[J]. IEEE Transactions on Control Systems Technology, 1998, 6(3): 412-420.
[10] SHEN Shui-wen, WANG Jun. Nonlinear dynamics and stability analysis of vehicle plane motions[J]. Vehicle System Dynamics, 2007, 45(1): 15-23.
[11] INAGAKI S, KSHIRO I, YAMAMOTO M. Analysis on vehicle stability in critical cornering using phase plane method[J]. JSAE Review, 1995, 16(2): 287-292.
[12] KEN K, MASAKI Y. Vehicle stability control in limit cornering by active brake[J]. SAE Technical Paper, 1996, 960487.
[13] HE J, CROLLA D, LEVESLEY M, et al. Coordination of active steering, driveline and braking for integrated vehicle dynamics control[J]. Proc IMechE Part D: Journal of Automobile Engineering, 2006, 220(10): 1401-1421.
[14] 张晨晨,夏群生,何乐.质心侧偏角对车辆稳定性影响的研究[J].汽车工程,2011, 33(4): 277-282. ZHANG Chen-chen, XIA Qun-sheng, HE Le. A study on the influence of sideslip angle at mass center on vehicle stability[J]. Automotive Engineering, 2011, 33(4): 277-282.
[15] 刘伟,丁海涛,郭孔辉,等.质心侧偏角相图在车辆ESC系统稳定性控制的应用[J].北京理工大学学报,2013, 33(1): 42-46. LIU Wei, DING Hai-tao, GUO Kong-hui, et al. Application of side-slip angle phasigram to vehicle ESC system[J]. Transactions of Beijing Institute of Technology, 2013, 33(1): 42-46.
[16] 刘飞,熊璐,邓律华,等.基于相平面法的车辆行驶稳定性判定方法[J].华南理工大学学报,2014, 42(11): 63-70. LIU Fei, XIONG Lu, DENG Lü-hua, et al. Vehicle stability criterion based on phase plane method[J]. Journal of South China University of Technology, 2014, 42(11): 63-70.
[17] 熊璐,曲彤,冯源,等.极限工况下车辆行驶的稳定性判据[J]. 机械工程学报,2015, 51(10): 103-111. XIONG Lu, QU Tong, FENG Yuan, et al. Stability criterion for the vehicle under critical driving situation[J]. Journal of Mechanical Engineering, 2015, 51(10): 103-111.
[18] SLOTINE JJE, LI Wei-ping. Applied nonlinear control[M]. Englewood Cliff: Prentice Hall, 1991: 1-10.

[1] 曾光, 边强, 赵春江, 殷玉枫, 冯毅杰. 变参数下角接触球轴承保持架的稳定性与振动特性分析[J]. 工程设计学报, 2020, 27(6): 735-743.
[2] 黄泽好, 张振华, 黄旭, 雷伟. 鼓式制动器制动不稳定时变特性分析[J]. 工程设计学报, 2019, 26(6): 714-721.
[3] 杨少沛, 李蒙, 王得胜. 基于15F2K60S2的农用无人机电源监控仪表设计[J]. 工程设计学报, 2019, 26(3): 330-337.
[4] 唐林, 许志沛, 贺田龙, 敖维川. 基于BP神经网络的转动架稳定性灵敏度分析[J]. 工程设计学报, 2018, 25(5): 576-582.
[5] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[6] 林敏, 谢宗亮, 杨迎新, 李维均, 陈炼, 任海涛. 分散扶正与保径的新型PDC钻头设计与现场试验[J]. 工程设计学报, 2018, 25(1): 43-49.
[7] 周智勇, 韩章程. 基于物元分析与云模型的地下工程围岩稳定性评价[J]. 工程设计学报, 2017, 24(1): 57-63.
[8] 侯勇俊, 余乐, 方潘, 陈普春. 三激振器双质体振动系统自同步特性研究[J]. 工程设计学报, 2016, 23(1): 82-89.
[9] 夏拥军,王腾飞,张宏生. 腰绳装置对起重机吊臂起重平面外稳定性的影响[J]. 工程设计学报, 2015, 22(5): 394-398.
[10] 夏拥军,王腾飞,张宏生. 腰绳装置对起重机吊臂起重平面外稳定性的影响[J]. 工程设计学报, 2015, 22(4): 394-398.
[11] 张 强,赵 亮. 基于模糊灰色关联的三轴汽车操纵稳定性分析[J]. 工程设计学报, 2015, 22(1): 58-65.
[12] 张 宏,董 磊,赵秀梅. 基于软轴式随动控制的运煤车液压转向系统分析[J]. 工程设计学报, 2015, 22(1): 89-94.
[13] 李文军,周奇才,吴青龙,熊肖磊. 几何非线性臂架结构稳定拓扑优化[J]. 工程设计学报, 2014, 21(5): 449-455.
[14] 许志永, 张 厚, 吴 瑞, 陈明俊. 基于方环型频率选择表面的小型化设计[J]. 工程设计学报, 2014, 21(4): 378-381.
[15] 高晋,杨秀建. 车轮定位角对操纵稳定性指标影响的定量研究[J]. 工程设计学报, 2014, 21(3): 251-258.