Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (5): 634-645    DOI: 10.3785/j.issn.1006-754X.2025.05.107
机器人与机构设计     
一种可变径多模式移动并联机器人的设计与分析
刘玉航(),张春燕(),田正雨,刘正阳
上海工程技术大学 机械与汽车工程学院,上海 201600
Design and analysis of a variable-diameter multi-mode mobile parallel robot
Yuhang LIU(),Chunyan ZHANG(),Zhengyu TIAN,Zhengyang LIU
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
 全文: PDF(6776 KB)   HTML
摘要:

针对复杂非结构化环境下移动机器人的折展能力与多模式适应性不足的问题,提出了一种由可变径平台和4-URU并联机构组成的可变径多模式移动并联机器人。首先,基于凸轮机构的特性设计了由多根径向伸缩杆组成的可变径平台,并分析了其结构与受力特性。然后,结合可变径平台的伸缩特性,以4-URU并联机构为主体构建了多模式移动并联机器人,并基于螺旋理论对4-URU并联机构的自由度进行了分析,得到了不同运动模式下的自由度及切换方法。在此基础上,采用ZMP(zero moment point,零力矩点)理论对机器人在各模式下的稳定性进行了评估。最后,通过ADAMS仿真和样机实验验证了机器人在窄缝穿越、单环滚动及双轮越障等模式下的越障性能与稳定性。结果表明,所设计的移动并联机器人兼具良好的折展能力与多模式适应性,可为复杂环境下多功能移动机器人的设计与应用提供新思路。

关键词: 折展能力多模式移动并联机器人ADAMS仿真    
Abstract:

Aiming at the problem of insufficient folding and unfolding ability and multi-mode adaptability of mobile robots in complex unstructured environments, a variable-diameter multi-mode mobile parallel robot composed of a variable-diameter platform and a 4-URU parallel mechanism is proposed. Firstly, a variable-diameter platform with multiple radial telescopic rods was designed based on the cam mechanism characteristics, and its structure and force characteristics were analyzed. Then, combining the telescopic characteristics of the variable-diameter platform, a multi-mode mobile parallel robot was constructed with the 4-URU parallel mechanism as the main body. The degrees of freedom of the 4-URU parallel mechanism were analyzed by spiral theory, and the degrees of freedom and switching methods under different motion modes were obtained. On this basis, the ZMP (zero moment point) theory was used to evaluate the stability of the robot in various modes. Finally, the obstacle-crossing performance and stability of the robot in narrow-slit crossing, single-loop rolling and dual-wheel obstacle crossing modes were verified through ADAMS simulation and prototype experiments. The results show that the designed mobile parallel robot has good folding and unfolding ability and multi-mode adaptability, which can provide a new solution for the design and application of multi-functional mobile robots in complex environments.

Key words: folding and unfolding ability    multi-mode    mobile parallel robot    ADAMS simulation
收稿日期: 2025-01-17 出版日期: 2025-10-31
CLC:  TH 112  
基金资助: 国家重点研发计划“工业软件”重点专项(SQ2024YFB3300124)
通讯作者: 张春燕     E-mail: qcsjlyh@163.com;cyzhang@sues.edu.cn
作者简介: 刘玉航(1997—),男,硕士生,从事机器人机构学研究,E-mail: qcsjlyh@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘玉航
张春燕
田正雨
刘正阳

引用本文:

刘玉航,张春燕,田正雨,刘正阳. 一种可变径多模式移动并联机器人的设计与分析[J]. 工程设计学报, 2025, 32(5): 634-645.

Yuhang LIU,Chunyan ZHANG,Zhengyu TIAN,Zhengyang LIU. Design and analysis of a variable-diameter multi-mode mobile parallel robot[J]. Chinese Journal of Engineering Design, 2025, 32(5): 634-645.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.107        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I5/634

图1  可变径平台示意图
图2  2种空间内不同数量伸缩杆的受力情况
图3  可变径平台局部放大示意图
图4  伸缩杆运动轨迹变化
图5  可变径多模式移动并联机器人
图6  机器人多模式切换示意图
图7  4-URU并联机构简图
图8  URU支链螺旋分析
运动模式运动螺旋约束螺旋自由度运动性质
窄缝穿越模式$11=001;000$12=100;000$13=100;0e3f3$14=100;0e4f4$15=001;d5e50$1r=000;100$2r=000;0104沿XYZ轴的移动和绕Z轴的转动
单环滚动模式$11=100;000$12=100;0b2c2$13=100;0b3c3$14=100;000$1r=100;000$2r=000;010$3r=000;0013沿X轴的移动和绕YZ轴的转动
双轮越障模式1X轴转动
表1  不同模式下4-URU并联机构的自由度
图9  可变径平台折展原理
图10  URU支链折展原理
图11  机器人在收拢与展开状态下的体积包络示意图
图12  机器人体折展比变化曲线
图13  机器人的窄缝穿越步态
图14  单环滚动模式运动学模型
图15  机器人的单环滚动步态
图16  机器人的双轮越障步态
图17  机器人驱动电机分布图
运动模式窄缝穿越模式单环滚动模式双轮越障模式
电机状态
表2  不同模式下的驱动电机状态
图18  不同模式下机器人质心的运动趋向
图19  单环滚动模式下机器人质心的投影
参数数值
接触刚度/(N/mm)10 000
静摩擦因数0.4
动摩擦因数0.3
碰撞力指数1.5
最大穿透深度/mm0.1
表3  环境相关参数
图20  机器人窄缝穿越仿真结果
图21  窄缝穿越模式下机器人上平台质心的位移曲线
图22  机器人单环滚动仿真结果
图23  单环滚动模式下机器人质心位移曲线
图24  机器人双轮越障仿真结果
图25  双轮越障模式下机器人质心位移曲线
图26  机器人样机
参数属性和数值
整机尺寸/(mm×mm×mm)200×200×450
整机质量/kg2.35
材料PLA、铝合金、不锈钢
工作电压/V3.3(伺服舵机)、8(减速电机)
表4  机器人样机的基本参数
图27  机器人控制系统框图
图28  机器人窄缝穿越模式实验
图29  机器人单环滚动模式实验
图30  机器人双轮越障模式实验
  
  
[1] ZHAI G D, ZHANG W T, HU W Y, et al. Coal mine rescue robots based on binocular vision: a review of the state of the art[J]. IEEE Access, 2020, 8: 130561-130575.
[2] HU J H. Development and review of group rescue robots based on artificial intelligence technology[J]. Advances in Engineering Technology Research, 2023, 9(1): 613.
[3] 唐超权, 佟秉航, 唐玮, 等. 矿用钢丝绳捻向攀爬轮式巡检机器人设计[J]. 中国机械工程, 2024, 35(10): 1732-1739.
TANG C Q, TONG B H, TANG W, et al. Design of twisting climbing wheeled inspection robot for mining wire ropes[J]. China Mechanical Engineering, 2024, 35(10): 1732-1739.
[4] JING G Q, QIN X Y, WANG H Y, et al. Developments, challenges, and perspectives of railway inspection robots[J]. Automation in Construction, 2022, 138: 104242.
[5] 张元勋, 黄泽东, 韩亮亮, 等. 适用于月面极端地形的爬-滚机器人设计及爬行滚动特性分析[J]. 机械工程学报, 2021, 57(3): 35-48. doi:10.3901/jme.2021.03.035
ZHANG Y X, HUANG Z D, HAN L L, et al. Design and analysis of the crawling and rolling characteristics of the crawling and rolling robot for the lunar extreme terrain[J]. Journal of Mechanical Engineering, 2021, 57(3): 35-48.
doi: 10.3901/jme.2021.03.035
[6] TENNAKOON E, PEYNOT T, ROBERTS J, et al. Probe-before-step walking strategy for multi-legged robots on terrain with risk of collapse[C]//2020 IEEE International Conference on Robotics and Automation. Paris, May 31-Aug. 31, 2020.
[7] 刘毅, 丰宗强, 刘洋, 等. 轮式并联调姿机器人冗余控制策略研究[J]. 农业机械学报, 2022, 53(10): 423-435.
LIU Y, FENG Z Q, LIU Y, et al. Investigation on wheeled parallel pose-tuning robot redundant control strategy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 423-435.
[8] 褚宏鹏, 祁柏, 王慧奇, 等. 六自由度轮式并联机器人及其构型方法[J]. 机械工程学报, 2023, 59(3): 46-53. doi:10.3901/jme.2023.03.046
CHU H P, QI B, WANG H Q, et al. 6-DOF wheeled parallel robot and its design method[J]. Journal of Mechanical Engineering, 2023, 59(3): 46-53.
doi: 10.3901/jme.2023.03.046
[9] 孙建伟, 李维佳, 褚金奎. 基于张拉整体结构的仿生腿式机器人设计[J]. 机器人, 2023, 45(3): 302-312.
SUN J W, LI W J, CHU J K. Design of a bionic legged robot based on tensegrity structure[J]. Robot, 2023, 45(3): 302-312.
[10] 黄华, 王虎林, 王庆粉, 等. 一种基于行星履带轮越障与混合双吸附补偿的爬壁机器人的设计与研究[J]. 机器人, 2022, 44(4): 471-483.
HUANG H, WANG H L, WANG Q F, et al. Design and study on a wall-climbing robot based on planetary gear track obstacle-surmounting and hybrid double adsorption compensation[J]. Robot, 2022, 44(4): 471-483.
[11] 刘超, 巢鑫迪, 姚燕安. 多模式空间6R地面移动机构[J]. 机械工程学报, 2019, 55(23): 38-47. doi:10.3901/jme.2019.23.038
LIU C, CHAO X D, YAO Y A. Multi-mode spatial 6R ground mobile mechanism[J]. Journal of Mechanical Engineering, 2019, 55(23): 38-47.
doi: 10.3901/jme.2019.23.038
[12] PING A, ZHANG C Y, YANG J. Design and kinematic analysis of new multi-mode mobile parallel mechanism with deployable platform[J]. Industrial Robot: The International Journal of Robotics Research and Application, 2022, 49(5): 885-902.
[13] ZHANG C Y, DING B, ZHU J Y, et al. Analysis of structure and movement characteristics of a pipeline parallel mechanism[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2024, 48(2): 675-689.
[14] MICHAUD F, LÉTOURNEAU D, ARSENAULT M, et al. Multi-modal locomotion robotic platform using leg-track-wheel articulations[J]. Autonomous Robots, 2005, 18(2): 137-156.
[15] 陈致, 张春燕, 蒋新星, 等. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
CHEN Z, ZHANG C Y, JIANG X X, et al. Design and analysis of a reconfigurable spatial open/closed chain 6R mobile parallel mechanism[J]. Chinese Journal of Engineering Design, 2021, 28(4): 511-520.
[16] LI Y Z, YAO Y A, HE Y Y. Design and analysis of a multi-mode mobile robot based on a parallel mechanism with branch variation[J]. Mechanism and Machine Theory, 2018, 130: 276-300.
[17] 张春燕, 江毅文, 杨杰, 等. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
ZHANG C Y, JIANG Y W, YANG J, et al. Variable-direction multi-terrain mobile full R pair parallel robot[J]. Chinese Journal of Engineering Design, 2023, 30(2): 189-199.
[18] HE J, SUN Y L, YANG L M, et al. Design and control of TAWL: a wheel-legged rover with terrain-adaptive wheel speed allocation capability[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(4): 2212-2223.
[19] WANG S, CUI L L, ZHANG J F, et al. Balance control of a novel wheel-legged robot: design and experiments[C]//2021 IEEE International Conference on Robotics and Automation. Xi’an, May 30-Jun. 5, 2021.
[20] 韩秀英, 李旭莹, 凌金博, 等. 一种新型3-RRPU并联机构的运动学及鲁棒控制研究[J]. 机电工程, 2024, 41(8): 1464-1471.
HAN X Y, LI X Y, LING J B, et al. Kinematics and robust control of a novel 3-RRPU parallel mechanism[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(8): 1464-1471.
[1] 卢清华, 黄铭贤, 陈为林. 平面阻尼型欠驱动夹持器的多模式参数优化设计[J]. 工程设计学报, 2018, 25(6): 690-696.
[2] 刘娟秀,吴益飞,郭 健,李 睿,陈庆伟. 一种平地楼梯两用助行机器人的建模与仿真分析[J]. 工程设计学报, 2015, 22(5): 344-350.
[3] 刘娟秀,吴益飞,郭 健,李 睿,陈庆伟. 一种平地楼梯两用助行机器人的建模与仿真分析[J]. 工程设计学报, 2015, 22(4): 344-350.