Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (5): 579-589    DOI: 10.3785/j.issn.1006-754X.2025.05.145
机械设计理论与方法     
边缘计算和数字孪生融合驱动的多机高效协同运行方法
肖智杰1,2(),谢嘉成1,2,乔晓军1,3,王学文1,2(),秦浪1,2
1.太原理工大学 机械工程学院,山西 太原 030024
2.太原理工大学 煤矿综采装备山西省重点实验室,山西 太原 030024
3.山西太重工程机械有限公司,山西 太原 030000
Method for efficient multi-machine collaborative operation driven by integration of edge computing and digital twin
Zhijie XIAO1,2(),Jiacheng XIE1,2,Xiaojun QIAO1,3,Xuewen WANG1,2(),Lang QIN1,2
1.College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Shanxi Key Laboratory of Fully Mechanized Coal Mining Equipment, Taiyuan University of Technology, Taiyuan 030024, China
3.Shanxi TZCO Construction Machinery Co. , Ltd. , Taiyuan 030000, China
 全文: PDF(6934 KB)   HTML
摘要:

机械装备由于智能化程度不够高,难以完成较为复杂的作业任务,并且装备间协同运行的机制尚不明确。由此,将边缘计算、数字孪生和多智能体技术相结合,提出了一种边缘计算和数字孪生融合驱动的多机高效协同运行方法。首先,构建了终端物理装备Agent和边缘孪生系统Agent,设计了一种适用于各类智能化机械装备的边端虚实共生系统;然后,提出了一种双层分布式协同运行机制,其既可在单一装备中独立运行,又可通过物理直接交互和虚实间接交互两种交互模式实现多机协同运行;最后,基于实验室现有装备,构建了探测机器人和作业机器人的边端虚实共生系统,并通过机器人协同作业实验,验证了边端虚实共生系统和双层分布式协同运行机制的有效性。所提出的方法既可以提高装备的感知、决策、控制能力,又为多机高效协同运行提供了有力支持。

关键词: 边缘计算数字孪生多智能体系统多机协同    
Abstract:

The mechanical equipment, due to its insufficient level of intelligence, is unable to perform complex operational tasks, and the mechanism for collaborative operation among the multiple machines is not clearly defined. Thus, by integrating edge computing, digital twin and multi-agent technology, a method for efficient multi-machine collaborative operation driven by the integration of edge computing and digital twin was proposed. Firstly, the terminal physical equipment Agent and the edge twin system Agent were constructed, and an edge-terminal cyber-physical symbiotic system applicable to various intelligent mechanical equipment was designed. Secondly, a dual-layer distributed collaborative operation mechanism was proposed, which was allowed both independent operation on an individual equipment and collaborative operation among multiple machines through direct physical interaction and indirect cyber-physical interaction. Finally, based on the existing equipment in the laboratory, the cyber-physical symbiotic systems for the detection robot and the operation robot were built. Through the robot collaborative operation experiment, the efficiencies of the cyber-physical symbiotic system and the dual-layer distributed collaborative operation mechanism were verified. The proposed method not only enhances the equipment's perception, decision-making and control capabilities, but also provides strong support for efficient multi-machine collaborative operation.

Key words: edge computing    digital twin    multi-agent system    multi-machine collaboration
收稿日期: 2025-05-07 出版日期: 2025-10-31
CLC:  TP 39  
基金资助: 山西省科技成果转化引导专项项目(202304021301036);山西省留学人员科技活动择优资助重点项目(20230008);山西省回国留学人员科研资助项目(2023-71);山西省研究生教育创新计划研究生科研创新项目(2024KY259)
通讯作者: 王学文     E-mail: x2831328166@163.com;wangxuewen@tyut.edu.cn
作者简介: 肖智杰(2001—),男,硕士生,从事装备协同运行研究,E-mail: x2831328166@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
肖智杰
谢嘉成
乔晓军
王学文
秦浪

引用本文:

肖智杰,谢嘉成,乔晓军,王学文,秦浪. 边缘计算和数字孪生融合驱动的多机高效协同运行方法[J]. 工程设计学报, 2025, 32(5): 579-589.

Zhijie XIAO,Jiacheng XIE,Xiaojun QIAO,Xuewen WANG,Lang QIN. Method for efficient multi-machine collaborative operation driven by integration of edge computing and digital twin[J]. Chinese Journal of Engineering Design, 2025, 32(5): 579-589.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.145        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I5/579

图1  多机高效协同运行研究整体框架
图2  机械装备边端虚实共生系统
图3  交互网络
图4  交互流程
图5  机器人原型系统
图6  AgentE1监测模块界面
图7  AgentE1推理模块界面
图8  全局虚拟场景构建过程
图9  全局代价地图
图10  AgentE1控制模块界面
图11  AgentE2监测模块界面
图12  AgentE2推理模块界面
图13  机械臂轨迹规划
图14  AgentE2控制模块界面
图15  机器人协同作业现场
图16  作业机器人导航任务
图17  探测机器人工作区域
图18  局部作业场景更新
图19  机械臂轨迹规划结果
  
[1] ZHENG P, WANG H H, SANG Z Q, et al. Smart manufacturing systems for industry 4.0: conceptual framework, scenarios, and future perspectives[J]. Frontiers of Mechanical Engineering, 2018, 13(2): 137-150.
[2] TAO F, QI Q L. New IT driven service-oriented smart manufacturing: framework and characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(1): 81-91.
[3] 袁礼伟, 王耀南, 谭浩然, 等. 面向智能制造的自主可控工业互联网发展研究[J]. 中国工程科学, 2025, 27(3): 38-53. doi:10.15302/j-sscae-2024.12.027
YUAN L W, WANG Y N, TAN H R, et al. Independent and controllable industrial Internet for intelligent manufacturing[J]. Strategic Study of CAE, 2025, 27(3): 38-53.
doi: 10.15302/j-sscae-2024.12.027
[4] GUO L, HE Y L, WAN C C, et al. From cloud manufacturing to cloud-edge collaborative manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2024, 90: 102790.
[5] 王文波, 张映锋, 顾寄南, 等. 数据驱动的离散制造系统性能退化机理建模与预测控制方法研究[J]. 机械工程学报, 2024, 60(16): 400-411.
WANG W B, ZHANG Y F, GU J N, et al. Research on data-driven performance degradation mechanism modelling and predictive control method for discrete manufacturing system[J]. Journal of Mechanical Engineering, 2024, 60(16): 400-411.
[6] 赵威, 王锴, 徐皑冬, 等. 面向智能制造的工业机器人健康评估方法[J]. 机器人, 2020, 42(4): 460-468.
ZHAO W, WANG K, XU A D, et al. An industrial robot health assessment method for intelligent manufacturing[J]. Robot, 2020, 42(4): 460-468.
[7] 周晓天, 孙上, 张海霞, 等. 多接入边缘计算赋能的AI质检系统任务实时调度策略[J]. 电子与信息学报, 2024, 46(2): 662-670.
ZHOU X T, SUN S, ZHANG H X, et al. Real-time task scheduling for multi-access edge computing-enabled AI quality inspection systems[J]. Journal of Electronics & Information Technology, 2024, 46(2): 662-670.
[8] 阴艳超, 梁珉清, 张万达, 等. 基于云边协同的智能数控车间自调控系统研究与实现[J]. 计算机集成制造系统, 2025, 31(3): 828-840.
YIN Y C, LIANG M Q, ZHANG W D, et al. Research and implementation of intelligent NC workshop self-regulation system based on cloud-edge collaboration[J]. Computer Integrated Manufacturing Systems, 2025, 31(3): 828-840.
[9] 曹新城, 姚斌, 贺王鹏, 等. 面向数字加工监控的边云工艺协同迁移[J]. 西安电子科技大学学报, 2022, 49(6): 152-163.
CAO X C, YAO B, HE W P, et al. Edge-cloud collaborative transfer of process knowledge for digital manufacturing monitoring[J]. Journal of Xidian University, 2022, 49(6): 152-163.
[10] 陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1): 1-15.
TAO F, ZHANG H, QI Q L, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 1-15.
[11] KANG R H, HU J S, SHI Z H, et al. A high-precision digital twin modeling approach for the serial-parallel hybrid drilling robot in aircraft assembly[J]. Robotics and Computer-Integrated Manufacturing, 2025, 94: 102986.
[12] 田颖,湛杨,岳辰,等.基于融合孪生模型的数控机床轮廓误差预测方法[J/OL].计算机集成制造系统, 31(7):2392-2401.
TIAN Y, ZHAN Y, YUE C, et al. Contour error prediction method for CNC machine tools based on an integrated twin model[J/OL]. Computer Integrated Manufacturing Systems, 31(7): 2392-2401.
[13] 胡炳涛, 钟锐锐, 冯毅雄, 等. 人-信息-物理互联环境下数字车间制造能力建模与自适应调度[J]. 机械工程学报, 2025, 61(3): 23-39.
HU B T, ZHONG R R, FENG Y X, et al. Digital shop floor manufacturing capability modeling and adaptive scheduling in human-cyber-physical interconnected environment[J]. Journal of Mechanical Engineering, 2025, 61(3): 23-39.
[14] 葛世荣, 张帆, 王世博, 等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报, 2020, 45(6): 1925-1936.
GE S R, ZHANG F, WANG S B, et al. Digital twin for smart coal mining workface: Technological frame and construction[J]. Journal of China Coal Society, 2020, 45(6): 1925-1936.
[15] 薛杨, 刘森, 吕杰, 等. 基于耦合场快速计算的核电厂主变压器数字孪生体搭建[J]. 工程设计学报, 2024, 31(6): 716-724.
XUE Y, LIU S, LÜ J, et al. Construction of digital twin of nuclear power plant main transformer based on fast calculation of coupling field[J]. Chinese Journal of Engineering Design, 2024, 31(6): 716-724.
[16] LI W F, FAN H X, CAI L, et al. Digital twin-driven proactive-reactive scheduling framework for port multi-equipment under a complex uncertain environment[J]. Simulation Modelling Practice and Theory, 2024, 136: 103011.
[17] 王哲, 丰飞, 郭峰. 大尺度复杂构件群体机器人协同并行制造系统集成的关键技术[J]. 航空制造技术, 2025, 68(4): 53-66.
WANG Z, FENG F, GUO F. Key technologies of swarm robotic cooperative parallel manufacturing system integration for large scale complex components[J]. Aeronautical Manufacturing Technology, 2025, 68(4): 53-66.
[18] 段现银, 邵宇轩, 彭芳瑜, 等. 基于数字孪生的复杂件多机器人智能加工方法[J]. 华中科技大学学报(自然科学版), 2024, 52(6): 1-9.
DUAN X Y, SHAO Y X, PENG F Y, et al. Digital twins based multi-robot intelligent machining method for complex components[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(6): 1-9.
[19] 陈璇, 舒亮, 冷玉祥, 等. 断路器柔性装配车间数字孪生系统设计[J]. 计算机工程与应用, 2022, 58(14): 245-257.
CHEN X, SHU L, LENG Y X, et al. Design of digital twin system for circuit breaker flexible assembly workshop[J]. Computer Engineering and Applications, 2022, 58(14): 245-257.
[20] 李松, 李顺, 王博文, 等. 数字孪生边缘网络端到端时延优化的任务卸载与资源分配方法[J]. 电子与信息学报, 2025, 47(3): 633-644.
LI S, LI S, WANG B W, et al. Task offloading and resource allocation method for end-to-end delay optimization in digital twin edge networks[J]. Journal of Electronics & Information Technology, 2025, 47(3): 633-644.
[21] 郑家瑜, 麦著学, 陈哲毅. 数字孪生云边网络下服务缓存与计算卸载优化[J/OL]. 系统仿真学报, 2024: 1-13. (2024-08-23). .
ZHENG J Y, MAI Z X, CHEN Z Y. Optimization of service cache and computing unloading in digital twin cloud edge network[J/OL]. China Industrial Economics, 2024: 1-13. (2024-08-23). .
[22] 马靖, 王译晨, 赵明, 等. 基于数字孪生的生产单元可视化管控[J]. 计算机集成制造系统, 2021, 27(5): 1256-1268.
MA J, WANG Y C, ZHAO M, et al. Visualization management and control methods of production cell based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27(5): 1256-1268.
[23] 张超, 周光辉, 肖佳诚, 等. 数字孪生制造单元多维多尺度建模与边—云协同配置[J]. 计算机集成制造系统, 2023, 29(2): 355-371.
ZHANG C, ZHOU G H, XIAO J C, et al. Multi-dimensional and multi-scale modeling and edge-cloud collaborative configuration method for digital twin manufacturing cell[J]. Computer Integrated Manufacturing Systems, 2023, 29(2): 355-371.
[24] 陶飞, 马昕, 戚庆林, 等. 数字孪生连接交互理论与关键技术[J]. 计算机集成制造系统, 2023, 29(1): 1-10.
TAO F, MA X, QI Q L, et al. Theory and key technologies of digital twin connection and interaction[J]. Computer Integrated Manufacturing Systems, 2023, 29(1): 1-10.
[25] 侯祥鹏, 兰兰, 陶长乐, 等. 边缘智能与协同计算: 前沿与进展[J]. 控制与决策, 2024, 39(7): 2385-2404.
HOU X P, LAN L, TAO C L, et al. Edge intelligence and collaborative computing: frontiers and advances[J]. Control and Decision, 2024, 39(7): 2385-2404.
[26] 王学文, 刘曙光, 王雪松, 等. 面向多人-多机复杂协作任务的煤矿XR智能运维系统[J]. 煤炭学报, 2024, 49(4): 2124-2140.
WANG X W, LIU S G, WANG X S, et al. Research on coal mine XR intelligent operation and maintenance system for complex collaborative tasks involving multiple humans and multiple robots[J]. Journal of China Coal Society, 2024, 49(4): 2124-2140.
[1] 李佰霖,马云帆,陈昱锐,罗远林,褚凡武,付文龙. 基于数字孪生的变压器热点温度预测预警技术研究[J]. 工程设计学报, 2025, 32(3): 281-295.
[2] 庞笛,魏喆,陈墨,张凯. 一种基于场景人物数量的任务卸载方案:针对云边协同智能监控系统[J]. 工程设计学报, 2024, 31(6): 689-696.
[3] 薛杨,刘森,吕杰,彭锦,司恒远. 基于耦合场快速计算的核电厂主变压器数字孪生体搭建[J]. 工程设计学报, 2024, 31(6): 716-724.
[4] 孙宝印,郝永平,张誉瀚,李子洋. 基于数字孪生的热电池保温棉自动缠绕系统研究[J]. 工程设计学报, 2024, 31(4): 538-546.
[5] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[6] 徐哲,孙树峰,张兴波,王茜,张丰云,王萍萍,谢章伟,张羽,刘纪新,孙维丽,曹爱霞. 基于数字孪生的光学位移台交互控制系统[J]. 工程设计学报, 2023, 30(2): 254-261.
[7] 张旭辉,鞠佳杉,杨文娟,吕欣媛. 基于数字孪生的复杂矿用设备预测性维护系统[J]. 工程设计学报, 2022, 29(5): 643-650.
[8] 傅贵武, 王兴波, 田英. 基于五轴加工中心智能生产线的数字孪生应用研究[J]. 工程设计学报, 2021, 28(4): 426-432.
[9] 白仲航, 孙意为, 许彤, 丁满. 基于设计任务的概念设计中产品数字孪生模型的构建[J]. 工程设计学报, 2020, 27(6): 681-689.
[10] 王安邦, 孙文彬, 段国林. 基于数字孪生与深度学习技术的制造加工设备智能化方法研究[J]. 工程设计学报, 2019, 26(6): 666-674.