Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (3): 421-426    DOI: 10.3785/j.issn.1006-754X.2025.04.185
基础零部件设计     
2 kW激光器泵浦源相变直冷板设计与性能分析
蒋宇翔1(),周超超1,陈勇1,林中湘2,段云锋3,邱长军1()
1.南华大学 超常环境下机电装备安全服役技术湖南省重点实验室,湖南 衡阳 421001
2.中煤地质集团有限公司,北京 100040
3.天津凯普林光电科技有限公司,天津 300201
Design and performance analysis of phase-change direct cooling plate for 2 kW laser pump source
Yuxiang JIANG1(),Chaochao ZHOU1,Yong CHEN1,Zhongxiang LIN2,Yunfeng DUAN3,Changjun QIU1()
1.Hunan Provincial Key Laboratory of Equipment Safety Service Technology under Abnormal Environment, University of South China, Hengyang 421001, China
2.China Coal Geology Group Co. , Ltd. , Beijing 100040, China
3.BWT Tianjin Ltd. , Tianjin 300201, China
 全文: PDF(3654 KB)   HTML
摘要:

为了实现2 kW光纤激光器的精准散热和部件轻量化,保证其稳定可靠工作,需对其泵浦源进行有效的热管理。针对2 kW光纤激光器设计了一种相变直冷板,其采用压缩机驱动、制冷剂相变直冷的方式;优化了相变直冷板的内部流道,并对冷板的散热性能进行CFD(computational fluid dynamics,计算流体动力学)数值模拟分析和实验测试。结果表明,在换热条件下,采用单流程加变径流道的相变直冷板,可以使泵浦源模拟热源在2.8 kW最高发热功率下工作温度保持为(26±0.5) ℃,表明该冷板能够满足2 kW光纤激光器稳定可靠工作的散热需求。研究结果为相变直冷系统原理样机的制作提供了理论支持。

关键词: 光纤激光器热管理相变直冷    
Abstract:

In order to achieve precise heat dissipation and component lightweighting for a 2 kW fiber laser, and to ensure its stable and reliable operation, effective thermal management for its pump source is necessary. A phase-change direct cooling plate was designed for a 2 kW fiber laser, using a method of compressor-driven and refrigerant phase-change direct cooling. The internal flow channel of the phase-change direct cooling plate was optimized, and the heat dissipation performance of the cooling plate was analyzed through CFD (computational fluid dynamics) numerical simulation and experimental test. it was determined that adopting the phase-change direct cooling plate with a single flow path and variable diameter of flow channel could maintain the working temperature of (26±0.5) ℃ at the pump source simulation heat source under the maximum heating power of 2.8 kW, while meeting the heat transfer condition. The result indicated that the colding plate could meet the heat dissipation requirements for the stable and reliable operation of a 2 kW fiber laser. The research results provide theoretical support for the production of principle prototype of phase-change direct cooling system.

Key words: fiber laser    thermal management    phase-change direct cooling
收稿日期: 2024-12-18 出版日期: 2025-07-02
CLC:  TB 663  
基金资助: 国家重点研发计划资助项目(2023YFC3010901)
通讯作者: 邱长军     E-mail: j1922868468@163.com;qcj@usc.edu.cn
作者简介: 蒋宇翔(1999—),男,硕士生,从事光纤激光器散热系统研究,E-mail: j1922868468@163.com, https://orcid.org/0009-0003-2411-9364
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒋宇翔
周超超
陈勇
林中湘
段云锋
邱长军

引用本文:

蒋宇翔,周超超,陈勇,林中湘,段云锋,邱长军. 2 kW激光器泵浦源相变直冷板设计与性能分析[J]. 工程设计学报, 2025, 32(3): 421-426.

Yuxiang JIANG,Chaochao ZHOU,Yong CHEN,Zhongxiang LIN,Yunfeng DUAN,Changjun QIU. Design and performance analysis of phase-change direct cooling plate for 2 kW laser pump source[J]. Chinese Journal of Engineering Design, 2025, 32(3): 421-426.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.185        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/421

图1  制冷剂流道示意图
图2  冷板实物
图3  优化前后流道进出口压差
图4  冷板仿真模型
图5  冷板温度分布云图
图6  冷却系统实验平台
图7  冷板测温点设置
图8  流道优化前后冷板测温点的温度变化
图9  冷板测温点温升时间
图10  冷板测温点温升曲线
图11  相变直冷系统原理样机
[1] 胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53(8): 14-24. doi:10.3788/lop53.080002
HU Z T, HE B, ZHOU J, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 14-24.
doi: 10.3788/lop53.080002
[2] LÜ Y, ZHENG H, LIU S. Thermal cooling analysis and validation of the ytterbium doped double clad fiber laser by a general analytic method[J]. Optical Fiber Technology, 2018, 45: 336-344.
[3] 李明, 宋国龙, 毕野, 等. 小型化全光纤激光器壳体结构设计与分析[J]. 激光技术, 2024, 48(4): 584-589.
LI M, SONG G L, BI Y, et al. Miniaturization design and analysis of shell structure of all-fiber laser[J]. Laser Technology, 2024, 48(4): 584-589.
[4] 马娜, 张岩岫, 邢晖, 等. 基于权重分析的高功率激光系统参数优化设计[J]. 光学 精密工程, 2024, 32(18): 2763-2771. doi:10.37188/ope.20243218.2763
MA N, ZHANG Y X, XING H, et al. Optimal design of core parameters of high-power laser systems based on weight analysis[J]. Optics and Precision Engineering, 2024, 32(18): 2763-2771.
doi: 10.37188/ope.20243218.2763
[5] 刘岩, 朱辰, 张利明, 等. 相变直冷高功率光纤激光器[J]. 激光与红外, 2019, 49(12): 1425-1430.
LIU Y, ZHU C, ZHANG L M, et al. Phase change direct cooling high power fiber laser[J]. Laser & Infrared, 2019, 49(12): 1425-1430.
[6] 姜一桐, 阮桢, 张磊, 等. 便携式高功率激光器蓄冷散热实验研究[J]. 今日消防, 2021, 6(9): 8-11.
JIANG Y T, RUAN Z, ZHANG L, et al. Experimental study on thermal management of portable high power laser based on cooling storage[J]. Fire Protection Today, 2021, 6(9): 8-11.
[7] 霍佳雨, 何俊, 张文尊, 等. 风冷光纤激光器的热分析和热管理[J]. 激光杂志, 2024, 45(12): 16-22.
HUO J Y, HE J, ZHANG W Z, et al. Thermal analysis and thermal management of air-cooled fiber lasers[J]. Laser Journal, 2024, 45(12): 16-22.
[8] 张利明, 张昆, 赵鸿, 等. 1.2 kW便携式光纤激光器[J]. 强激光与粒子束, 2022, 34(3): 26-30.
ZHANG L M, ZHANG K, ZHAO H, et al. 1.2 kW portable fiber laser[J]. High Power Laser and Particle Beams, 2022, 34(3): 26-30.
[9] 林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34(1): 73-84. doi:10.11884/HPLPB202234.210336
LIN A X, PENG K, YU J, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 73-84.
doi: 10.11884/HPLPB202234.210336
[10] 黄祎文, 全晓军, 林涛. 基于双蒸发器压缩制冷系统的激光器散热方案设计及实验研究[J]. 低温工程, 2022(4): 26-33.
HUANG Y W, QUAN X J, LIN T. Design and experimental research of laser cooling scheme based on dual-evaporator compressional refrigeration system[J]. Cryogenics, 2022(4): 26-33.
[11] 王泽嵩, 刘金平, 周易, 等. 泵驱动的制冷剂相变冷板冷却系统实验研究[J]. 制冷学报, 2024, 45(1): 36-45.
WANG Z S, LIU J P, ZHOU Y, et al. Experimental study on pump-driven refrigerant two-phase cold-plate cooling system[J]. Journal of Refrigeration, 2024, 45(1): 36-45.
[12] 刘凯, 刘金平, 周易, 等. 高热流密度多热源冷却用相变换热冷板实验研究[J]. 西安工程大学学报, 2023, 37(5): 99-106.
LIU K, LIU J P, ZHOU Y, et al. Experimental study on phase change heat transfer cooling plate for multiple heat sources cooling with high heat flux[J]. Journal of Xi’an Polytechnic University, 2023, 37(5): 99-106.
[13] LI X J, JIA L. The investigation on flow boiling heat transfer of R134a in micro-channels[J]. Journal of Thermal Science, 2015, 24(5): 452-462.
[14] LI L, GOU Y N, MIN H, et al. Experimental study on the pool boiling heat transfer of R134a outside various enhanced tubes[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126140.
[15] YASSER Z K, OUDAH M H. Experimental comparison of flow boiling heat transfer in smooth and microfin tubes using R134a, R1234yf, and R513A[J]. International Journal of Refrigeration, 2024, 168: 506-520.
[16] YE H Y, LUM L Y X, KANDASAMY R, et al. Flow boiling heat transfer enhancement of R134a in additively manufactured minichannels with microengineered surfaces[J]. Applied Thermal Engineering, 2024, 256: 124150.
[17] WANG Q F, CAO J F, SU D D, et al. Numerical simulation of R134a flow boiling heat transfer in a horizontal mini-channel under various gravity levels[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126141.
[18] 程勇, 郭延龙, 何志祝, 等. 相变散热技术在小型高效半导体抽运激光器中的应用研究[J]. 中国激光, 2016, 43(1): 102005. doi:10.3788/cjl201643.0102005
CHENG Y, GUO Y L, HE Z Z, et al. Application research of phase change material heat removal technology for compact high efficiency diode pumped laser[J]. Chinese Journal of Lasers, 2016, 43(1): 102005.
doi: 10.3788/cjl201643.0102005
[19] 杨锋平, 罗金恒, 赵新伟, 等. 输气管道高强度试压方法及其在X80管道上的实践[J]. 石油学报, 2013, 34(6): 1206-1211.
YNAG F P, LUO J H, ZHAO X W, et al. High-strength hydrostatic testing method for gas pipelines and its application in X80 pipelines[J]. Acta Petrolei Sinica, 2013, 34(6): 1206-1211.
[1] 徐玉梁, 陈利国, 白杨, 王振, 刘捷, 赵金旋. 汽油发动机双回路冷却系统的研究[J]. 工程设计学报, 2020, 27(5): 671-680.