基础零部件设计 |
|
|
|
|
2 kW激光器泵浦源相变直冷板设计与性能分析 |
蒋宇翔1( ),周超超1,陈勇1,林中湘2,段云锋3,邱长军1( ) |
1.南华大学 超常环境下机电装备安全服役技术湖南省重点实验室,湖南 衡阳 421001 2.中煤地质集团有限公司,北京 100040 3.天津凯普林光电科技有限公司,天津 300201 |
|
Design and performance analysis of phase-change direct cooling plate for 2 kW laser pump source |
Yuxiang JIANG1( ),Chaochao ZHOU1,Yong CHEN1,Zhongxiang LIN2,Yunfeng DUAN3,Changjun QIU1( ) |
1.Hunan Provincial Key Laboratory of Equipment Safety Service Technology under Abnormal Environment, University of South China, Hengyang 421001, China 2.China Coal Geology Group Co. , Ltd. , Beijing 100040, China 3.BWT Tianjin Ltd. , Tianjin 300201, China |
引用本文:
蒋宇翔,周超超,陈勇,林中湘,段云锋,邱长军. 2 kW激光器泵浦源相变直冷板设计与性能分析[J]. 工程设计学报, 2025, 32(3): 421-426.
Yuxiang JIANG,Chaochao ZHOU,Yong CHEN,Zhongxiang LIN,Yunfeng DUAN,Changjun QIU. Design and performance analysis of phase-change direct cooling plate for 2 kW laser pump source[J]. Chinese Journal of Engineering Design, 2025, 32(3): 421-426.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.185
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/421
|
[1] |
胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53(8): 14-24. doi:10.3788/lop53.080002 HU Z T, HE B, ZHOU J, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 14-24.
doi: 10.3788/lop53.080002
|
[2] |
LÜ Y, ZHENG H, LIU S. Thermal cooling analysis and validation of the ytterbium doped double clad fiber laser by a general analytic method[J]. Optical Fiber Technology, 2018, 45: 336-344.
|
[3] |
李明, 宋国龙, 毕野, 等. 小型化全光纤激光器壳体结构设计与分析[J]. 激光技术, 2024, 48(4): 584-589. LI M, SONG G L, BI Y, et al. Miniaturization design and analysis of shell structure of all-fiber laser[J]. Laser Technology, 2024, 48(4): 584-589.
|
[4] |
马娜, 张岩岫, 邢晖, 等. 基于权重分析的高功率激光系统参数优化设计[J]. 光学 精密工程, 2024, 32(18): 2763-2771. doi:10.37188/ope.20243218.2763 MA N, ZHANG Y X, XING H, et al. Optimal design of core parameters of high-power laser systems based on weight analysis[J]. Optics and Precision Engineering, 2024, 32(18): 2763-2771.
doi: 10.37188/ope.20243218.2763
|
[5] |
刘岩, 朱辰, 张利明, 等. 相变直冷高功率光纤激光器[J]. 激光与红外, 2019, 49(12): 1425-1430. LIU Y, ZHU C, ZHANG L M, et al. Phase change direct cooling high power fiber laser[J]. Laser & Infrared, 2019, 49(12): 1425-1430.
|
[6] |
姜一桐, 阮桢, 张磊, 等. 便携式高功率激光器蓄冷散热实验研究[J]. 今日消防, 2021, 6(9): 8-11. JIANG Y T, RUAN Z, ZHANG L, et al. Experimental study on thermal management of portable high power laser based on cooling storage[J]. Fire Protection Today, 2021, 6(9): 8-11.
|
[7] |
霍佳雨, 何俊, 张文尊, 等. 风冷光纤激光器的热分析和热管理[J]. 激光杂志, 2024, 45(12): 16-22. HUO J Y, HE J, ZHANG W Z, et al. Thermal analysis and thermal management of air-cooled fiber lasers[J]. Laser Journal, 2024, 45(12): 16-22.
|
[8] |
张利明, 张昆, 赵鸿, 等. 1.2 kW便携式光纤激光器[J]. 强激光与粒子束, 2022, 34(3): 26-30. ZHANG L M, ZHANG K, ZHAO H, et al. 1.2 kW portable fiber laser[J]. High Power Laser and Particle Beams, 2022, 34(3): 26-30.
|
[9] |
林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34(1): 73-84. doi:10.11884/HPLPB202234.210336 LIN A X, PENG K, YU J, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 73-84.
doi: 10.11884/HPLPB202234.210336
|
[10] |
黄祎文, 全晓军, 林涛. 基于双蒸发器压缩制冷系统的激光器散热方案设计及实验研究[J]. 低温工程, 2022(4): 26-33. HUANG Y W, QUAN X J, LIN T. Design and experimental research of laser cooling scheme based on dual-evaporator compressional refrigeration system[J]. Cryogenics, 2022(4): 26-33.
|
[11] |
王泽嵩, 刘金平, 周易, 等. 泵驱动的制冷剂相变冷板冷却系统实验研究[J]. 制冷学报, 2024, 45(1): 36-45. WANG Z S, LIU J P, ZHOU Y, et al. Experimental study on pump-driven refrigerant two-phase cold-plate cooling system[J]. Journal of Refrigeration, 2024, 45(1): 36-45.
|
[12] |
刘凯, 刘金平, 周易, 等. 高热流密度多热源冷却用相变换热冷板实验研究[J]. 西安工程大学学报, 2023, 37(5): 99-106. LIU K, LIU J P, ZHOU Y, et al. Experimental study on phase change heat transfer cooling plate for multiple heat sources cooling with high heat flux[J]. Journal of Xi’an Polytechnic University, 2023, 37(5): 99-106.
|
[13] |
LI X J, JIA L. The investigation on flow boiling heat transfer of R134a in micro-channels[J]. Journal of Thermal Science, 2015, 24(5): 452-462.
|
[14] |
LI L, GOU Y N, MIN H, et al. Experimental study on the pool boiling heat transfer of R134a outside various enhanced tubes[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126140.
|
[15] |
YASSER Z K, OUDAH M H. Experimental comparison of flow boiling heat transfer in smooth and microfin tubes using R134a, R1234yf, and R513A[J]. International Journal of Refrigeration, 2024, 168: 506-520.
|
[16] |
YE H Y, LUM L Y X, KANDASAMY R, et al. Flow boiling heat transfer enhancement of R134a in additively manufactured minichannels with microengineered surfaces[J]. Applied Thermal Engineering, 2024, 256: 124150.
|
[17] |
WANG Q F, CAO J F, SU D D, et al. Numerical simulation of R134a flow boiling heat transfer in a horizontal mini-channel under various gravity levels[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126141.
|
[18] |
程勇, 郭延龙, 何志祝, 等. 相变散热技术在小型高效半导体抽运激光器中的应用研究[J]. 中国激光, 2016, 43(1): 102005. doi:10.3788/cjl201643.0102005 CHENG Y, GUO Y L, HE Z Z, et al. Application research of phase change material heat removal technology for compact high efficiency diode pumped laser[J]. Chinese Journal of Lasers, 2016, 43(1): 102005.
doi: 10.3788/cjl201643.0102005
|
[19] |
杨锋平, 罗金恒, 赵新伟, 等. 输气管道高强度试压方法及其在X80管道上的实践[J]. 石油学报, 2013, 34(6): 1206-1211. YNAG F P, LUO J H, ZHAO X W, et al. High-strength hydrostatic testing method for gas pipelines and its application in X80 pipelines[J]. Acta Petrolei Sinica, 2013, 34(6): 1206-1211.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|