Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (6): 766-775    DOI: 10.3785/j.issn.1006-754X.2024.14.04
【特约专栏】“2024’工程机械行业科技节”成果展示——创新技术及其应用     
流体脉宽调制双向变量机构流量特性研究
徐修文1(),任燕1(),鲁立中2,阮健2
1.温州大学 机电工程学院,浙江 温州 325035
2.浙江工业大学 机械工程学院,浙江 杭州 310023
Research on flow characteristics of fluid pulse width modulation bidirectional variable mechanism
Xiuwen XU1(),Yan REN1(),Lizhong LU2,Jian RUAN2
1.College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
2.College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(3729 KB)   HTML
摘要:

液压系统流量双向变化大多采用变转速驱动变量泵的方法,但变量机构的结构较复杂,且频繁双向变量调节会导致动态响应速度较慢。因此,提出了适用于定量泵流量调节的新机构,以实现双向变量功能。通过双向变量机构阀芯的轴向移动改变流体脉宽调制占空比,阀芯相对阀套的转速与阀芯上过流窗口数的乘积决定了流体脉宽调制的频率。对双向变量机构的流量特性进行了仿真和试验分析,结果表明:双向变量机构能够实现占空比为0~100%的双向流量控制,且仿真结果与试验结果之间仅有1.8%的误差。研究结果为固定转速设计的液压泵在变转速工况下的使用提供了一种新的流量控制方式。

关键词: 双向变量机构双向变量流量调节流体脉宽调制流量特性    
Abstract:

The method of variable-speed driving variable pump is mostly adopted for the bidirectional flow changes of hydraulic system. However, the structure of variable mechanism is relatively complicated, and frequent bidirectional variable regulation will lead to low dynamic response speed. Therefore, a new mechanism for flow regulation of fixed displacement pump was proposed to realize bidirectional variable function. The duty cycle of fluid pulse width modulation was changed by the axial movement of the spool of bidirectional variable mechanism. The product of the rotating speed of the spool relative to the valve sleeve and the number of valve port on the spool determined the frequency of fluid pulse width modulation. The flow characteristics of the bidirectional variable mechanism were analyzed by simulation and test. The results showed that the bidirectional variable mechanism could achieve bidirectional flow control with duty cycle of 0 to 100%, ane there was only 1.8% deviation between the simulation and test results. The research results provide a new flow control method for hydraulic pump with fixed speed design to use under variable speed working condition.

Key words: bidirectional variable mechanism    bidirectional variable flow regulation    fluid pulse width modulation    flow characteristic
收稿日期: 2024-04-16 出版日期: 2024-12-31
CLC:  TH 137.5  
基金资助: 国家自然科学基金资助项目(52175060)
通讯作者: 任燕     E-mail: xgs180m@126.com;rentingting211@wzu.edu.cn
作者简介: 徐修文(1998—),男,硕士生,从事液压元件建模与仿真研究,E-mail: xgs180m@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐修文
任燕
鲁立中
阮健

引用本文:

徐修文,任燕,鲁立中,阮健. 流体脉宽调制双向变量机构流量特性研究[J]. 工程设计学报, 2024, 31(6): 766-775.

Xiuwen XU,Yan REN,Lizhong LU,Jian RUAN. Research on flow characteristics of fluid pulse width modulation bidirectional variable mechanism[J]. Chinese Journal of Engineering Design, 2024, 31(6): 766-775.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.14.04        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I6/766

图1  流体脉宽调制原理示意
图2  双向变量机构的结构1—轴承座;2—壳体;3—外层阀套;4—内层阀套;5—阀芯;6—传动轴;7—内螺纹堵头;8—弹簧座(弹簧未画出);9—端盖。
图3  阀芯和阀套的结构
图4  双向变量机构工作原理示意
图5  阀口过流面积变化示意
图6  流体流动方向变化示意
图7  阀口过流面积示意
图8  d ∈[- b+c, - b+c+a]时阀口过流面积变化示意
图9  d ∈[- b+c+a, c]时阀口过流面积变化示意
图10  d ∈[- b+c+2a, b+c - a]时阀口过流面积变化示意
图11  负载口侧阀口过流面积
图12  双向变量机构阀控液压马达系统的AMESim仿真模型
参数数值
液压油密度/(kg·m-3)870
阀口流量系数0.67
阀口所在轴肩半径/mm15
油液弹性模量/Pa8×108
液压泵排量/(L/min)60
液压泵转速/(r/min)1 000
阀芯转速/(r/min)3 000
回油背压/MPa1
表1  双向变量机构流量特性仿真参数
图13  占空比—阀芯轴向位移仿真曲线
图14  不同负载下双向变量机构输出流量仿真曲线
图15  不同负载下双向变量机构输出的稳态流量仿真曲线
图16  试验台相关设备
图17  阀芯和阀套实物
图18  双向变量机构试验原理示意1—控制中心;2—溢流阀;3—流量传感器;4—压力传感器;5—双向变量机构;6—步进电机;7—负载。
图19  不同占空比下负载口侧压力波形
图20  无负载时双向变量机构流量特性曲线
图21  负载为600 N·m时双向变量机构流量特性曲线
1 扈凯, 张文毅, 祁兵, 等. 液压底盘在农业机械领域的应用与发展[J]. 江苏农业科学, 2019, 47(14): 259-263.
HU K, ZHANG W Y, QI B, et al. Application and development of hydraulic chassis in agricultural machineries domains[J]. Jiangsu Agricultural Sciences, 2019, 47(14): 259-263.
2 毛胜辉, 吕蒙, 李亚, 等. 船舵液压传动装置的振动特性分析和试验[J]. 舰船科学技术, 2023, 45(17): 66-69.
MAO S H, LÜ M, LI Y, et al. Vibration characteristics analysis and testing of ship rudder hydraulic transmission device[J]. Ship Science and Technology, 2023, 45(17): 66-69.
3 汪世益, 毛亚西. 闭式双向变量泵伺服系统的特性分析[J]. 液压与气动, 2013, 37(12): 26-30.
WANG S Y, MAO Y X. Characteristic analysis of servo system of closed type hydraulic variable pump[J]. Chinese Hydraulics & Pneumatics, 2013, 37(12): 26-30.
4 何智, 刘庆庭, 区颖刚. 甘蔗收获机双向变量柱塞泵动态响应特性仿真[J]. 农业机械学报, 2012, 43(): 329-334, 328.
HE Z, LIU Q T, OU Y G. Dynamic response characteristic simulation of double-action variable displacement plunger pump for sugarcane harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(): 329-334, 328.
5 何智,刘庆庭,区颖刚.伊顿1系列64双向变量柱塞泵动态响应特性仿真研究[C]//中国农业机械学会.2012中国农业机械学会国际学术年会论文集.2012:788-794..
HE Z, LIU Q T, QU Y G. Analysis on the dynamic response characteristic of a series 1 model 64 eaton double-action variable displacement plunger pump by virtual prototype technology[C]//Chinese Society for Agricultural Machinery. Proceedings of the 2012 International Academic Annual Conference of the Chinese Society for Agricultural Machinery. 2012: 788-794..
6 王伟. 双向变量泵、马达容积调速回路方案设计[J]. 科技创业月刊, 2006, 19(7): 192-193.
WANG W. Volumetric speed control closed circuit design of double-action variable displacement pump and motor[J]. Pioneering with Science & Technology Monthly, 2006, 19(7): 192-193.
7 赵家文. 基于液压传动的无级自动变速器模型分析[J]. 机床与液压, 2013, 41(20): 103-105.
ZHAO J W. Model analysis for stepless automatic transmission based on hydraulic technology[J]. Machine Tool & Hydraulics, 2013, 41(20): 103-105.
8 KOGLER H, SCHEIDL R, EHRENTRAUT M. A simulation model of a hydraulic buck converter based on a mixed time frequency domain iteration[C]//ASME/BATH 2013 Symposium on Fluid Power and Motion Control, Sarasota, Florida, USA, Oct. 6-9, 2013.
9 MANSOURI G, MISOVEC K, JOHNSON B, et al. Variable flow supply using switched-mode control of a fixed-displacement pump[C]//Proceedings of the Seventh Scandinavian International Conference on Fluid Power. Linköping, Sweden, 2001: 361-376.
10 孟庆堂, 施光林, 泮健. 一种数字配流与调速式低速大扭矩液压马达[J]. 机床与液压, 2008, 36(10): 1-3, 17.
MENG Q T, SHI G L, PAN J. A new type of low speed high torque hydraulic motor using digital distribution and speed adjusting[J]. Machine Tool & Hydraulics, 2008, 36(10): 1-3, 17.
11 孟庆堂. 低速大扭矩液压马达的数字式配流与调速机构研究[D]. 上海: 上海交通大学, 2009.
MENG Q T. Research on digital flow distribution and speed regulation mechanism of low speed and high torque hydraulic motor[D]. Shanghai: Shanghai Jiao- tong University, 2009.
12 COVE H R. Linear hydraulic stepping actuator with fast close capabilities: US7237472[P]. 2007-07-03.
13 GRADL C, KOVACIC I, SCHEIDL R. Development of an energy saving hydraulic stepper drive[C]//8th FPNI Ph D Symposium on Fluid Power, Lappeenranta, Finland, June 11, 2014.
14 TU H C, RANNOW M B, WANG M, et al. High-speed 4-way rotary on/off valve for virtually variable displacement pump/motor applications[EB/OL]. [2024-04-06]..
15 TU H C, RANNOW M B, WANG M, et al. Design, modeling, and validation of a high-speed rotary pulse-width-modulation on/off hydraulic valve[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(6): 061002.
16 WANG M R. CFD analysis, sensing and control of a rotary pulse width modulating valve to enable a virtually variable displacement pump[D]. Minnesota, Minneapolis:University of Minnesota, 2017.
17 BATDORFF M A, LUMKES J H. Virtually variable displacement hydraulic pump including compressability and switching losses[C]//ASME 2006 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, Nov. 5-6, 2006.
18 LUMKES J, BATDORFF M A, MAHRENHOLZ J R. Model development and experimental analysis of a virtually variable displacement pump system[J]. International Journal of Fluid Power, 2009, 10(3): 17-27.
19 ZHANG Q W, KONG X D, YU B, et al. Review and development trend of digital hydraulic technology[J]. Applied Sciences, 2020, 10(2): 579.
20 徐成都, 任燕, 黄煜, 等. 二维脉宽调制转阀压力损失特性分析[J]. 液压与气动, 2023, 47(10): 56-61.
XU C D, REN Y, HUANG Y, et al. Study on pressure loss of a two-dimensional rotary valve for fluid pulse width modulation[J]. Chinese Hydraulics & Pneumatics, 2023, 47(10): 56-61.
[1] 任燕,陶王方,吴剑,黄煜,鲁立中. 基于流体脉宽调制的定量泵负载敏感系统能耗分析[J]. 工程设计学报, 2024, 31(6): 776-783.
[2] 赵明, 周洪, 陈鹰. 表示气动元件流量特性若干参数间的关系[J]. 工程设计学报, 2002, 9(4): 222-224.