1 |
国务院. 国务院关于印发“十四五”节能减排综合工作方案的通知[J]. 中华人民共和国国务院公报, 2022(5): 46-52. The State Council. Notice of the State Council on the issuance of the “14th Five-Year Plan” for comprehensive energy conservation and emission reduction[J]. Gazette of the State Council of the People's Republic of China, 2022(5): 46-52.
|
2 |
国务院. 国务院关于促进国家高新技术产业开发区高质量发展的若干意见[J]. 中华人民共和国国务院公报,2020(21): 9-12. The State Council. Several opinions of the State Council on promoting high-quality development of national high-tech industrial development zones[J]. Gazette of the State Council of the People's Republic of China, 2020(21): 9-12.
|
3 |
张毅, 李文强, 李彦, 等. 基于碳足迹信息模型的产品低碳创新设计[J]. 工程设计学报, 2017, 24(2): 141-148. ZHANG Y, LI W Q, LI Y, et al. Product low-carbon innovative design based on the carbon footprint information model[J]. Chinese Journal of Engineering Design, 2017, 24(2): 141-148.
|
4 |
TRIVEDI V, BHATT N. A review on energy conservation in manufacturing industry[C]//2018 International Conference on Current Trends towards Converging Technologies. Coimbatore, Mar. 1-3, 2018.
|
5 |
ZHOU A H, LI J. Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China's provincial-level data[J]. Energy, 2021, 228: 120562.
|
6 |
张琦, 刘帅, 徐化岩, 等. 钢铁企业智慧能源管控系统开发与实践[J]. 钢铁, 2019, 54(10): 125-133. ZHANG Q, LIU S, XU H Y, et al. Development and practice of smart energy management and control system in iron and steel works[J]. Iron & Steel, 2019, 54(10): 125-133.
|
7 |
TSAI K L, LEU F Y, YOU I. Residence energy control system based on wireless smart socket and IoT[J]. IEEE Access, 2016, 4: 2885-2894.
|
8 |
KHAN M, SILVA B N, HAN K. Internet of Things based energy aware smart home control system[J]. IEEE Access, 2016, 4: 7556-7566.
|
9 |
刘亚东. 造纸厂蒸汽消耗需求预测研究及预测系统开发[D]. 广州: 华南理工大学, 2013. LIU Y D. Study on forecast of steam consumption demand in paper mill and development of the forecast system[D]. Guangzhou: South China University of Technology, 2013.
|
10 |
MOTTAHEDI M, MOHAMMADPOUR A, AMIRI S S, et al. Multi-linear regression models to predict the annual energy consumption of an office building with different shapes[J]. Procedia Engineering, 2015, 118: 622-629.
|
11 |
罗凤章, 张旭, 杨欣, 等. 基于深度学习的综合能源配电系统负荷分析预测[J]. 高电压技术, 2021, 47(1): 23-32. LUO F Z, ZHANG X, YANG X, et al. Load analysis and prediction of integrated energy distribution system based on deep learning[J]. High Voltage Engineering, 2021, 47(1): 23-32.
|
12 |
MOGHADASI M, OZGOLI H ALI, FARHANI F. Steam consumption prediction of a gas sweetening process with methyldiethanolamine solvent using machine learning approaches[J]. International Journal of Energy Research, 2021, 45(1): 879-893.
|
13 |
ZHOU C G, FANG Z S, XU X N, et al. Using long short-term memory networks to predict energy consumption of air-conditioning systems[J]. Sustainable Cities and Society, 2020, 55: 102000.
|
14 |
吕忠麟, 顾洁, 孟璐. 基于耦合特征与多任务学习的综合能源系统短期负荷预测[J]. 电力系统自动化, 2022, 46(11): 58-66. LÜ Z L, GU J, MENG L. Short-term load forecasting for integrated energy system based on coupling features and multi-task learning[J]. Automation of Electric Power Systems, 2022, 46(11): 58-66.
|
15 |
周璇, 林家泉. 基于改进长短时记忆网络的地面空调能耗预测[J]. 北京航空航天大学学报, 2023, 49(10): 2750-2760. ZHOU X, LIN J Q. Prediction of ground air conditioner energy consumption based on improved long short-term memory neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(10): 2750-2760.
|
16 |
LI X, LIU S, ZHAO L, et al. An integrated building energy performance evaluation method: from parametric modeling to GA-NN based energy consumption prediction modeling[J]. Journal of Building Engineering, 2022, 45: 103571.
|
17 |
WANG X W, LI Z J, ZHANG Y L. Model for predicting the operating temperature of stratospheric airship solar cells with a support vector machine[J]. Energies, 2021, 14(5): 1228.
|
18 |
周皓, 刘尚林, 杨凯弘, 等. 基于互信息与支持向量回归的盾构掘进载荷预测方法研究[J]. 工程设计学报, 2022, 29(3): 286-292. ZHOU H, LIU S L, YANG K H, et al. Research on prediction method of driving load of shield machine based on mutual information and support vector regression[J]. Chinese Journal of Engineering Design, 2022, 29(3): 286-292.
|
19 |
毛君, 李强, 谢苗, 等. 多目标优化软件开发及其应用[J]. 工程设计学报, 2015, 22(3): 262-268. doi:10.3785/j.issn.1006-754X.2015.03.010 MAO J, LI Q, XIE M, et al. Multi-objective optimization software development and application[J]. Chinese Journal of Engineering Design, 2015, 22(3): 262-268.
doi: 10.3785/j.issn.1006-754X.2015.03.010
|
20 |
QIAN W Y, LI M. Convergence analysis of standard particle swarm optimization algorithm and its improvement[J]. Soft Computing, 2018, 22(12): 4047-4070.
|
21 |
HOU G Y, XU Z D, LIU X, et al. Improved particle swarm optimization for selection of shield tunneling parameter values[J]. Computer Modeling in Engineering & Sciences, 2019, 118(2): 317-337.
|
22 |
CHANG W D. An improved PSO algorithm for solving nonlinear programing problems with constrained conditions[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2021, 12(1): 2150001.
|
23 |
ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 1655-1661.
|
24 |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Oct. 25-29, 2014.
|
25 |
彭桐歆, 韩勇, 王程, 等. 面向短时地铁客流量预测的混合深度学习模型[J]. 计算机工程, 2022, 48(5): 297-305. PENG T X, HAN Y, WANG C, et al. Hybrid deep-learning model for short-term metro passenger flow prediction[J]. Computer Engineering, 2022, 48(5): 297-305.
|
26 |
查玉坤, 张其林, 赵永标, 等. 基于三维卷积和CLSTM神经网络的水产养殖溶解氧预测[J]. 应用科学学报, 2021, 39(4): 615-626. ZHA Y K, ZHANG Q L, ZHAO Y B, et al. Prediction of dissolved oxygen in aquaculture based on 3D convolution and CLSTM neural network[J]. Journal of Applied Sciences, 2021, 39(4): 615-626.
|
27 |
DIBA A L, FAYYAZ M, SHARMA V, et al. Temporal 3D ConvNets: new architecture and transfer learning for video classification[EB/OL]. (2017-11-22) [2024-02-01]. .
|
28 |
WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[EB/OL]. (2018-11-19) [2024-02-01]. .
|
29 |
刘文华. 基于机器学习的火力发电蒸汽量预测方法研究[D]. 太原: 太原科技大学, 2019. LIU W H. Research on prediction method of steam volume of thermal power generation based on machine learning[D]. Taiyuan: Taiyuan University of Science and Technology, 2019.
|
30 |
LIU L J, WANG L, YU Z. Remaining useful life estimation of aircraft engines based on deep convolution neural network and LightGBM combination model[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 165.
|