Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (5): 527-536    DOI: 10.3785/j.issn.1006-754X.2022.00.065
设计理论与方法     
多准则模糊关联的机械产品关键元动作识别
李雪萍(),冉琰()
重庆大学 机械传动国家重点实验室,重庆 400044
Key meta-action identification for mechanical product with multi-criteria fuzzy association
Xue-ping LI(),Yan RAN()
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
 全文: PDF(2145 KB)   HTML
摘要:

关键零件作为复杂机械产品的核心,对实现产品功能具有重要作用。然而,产品中零件数目庞大且具有耦合关系,导致识别关键零件十分困难。为实现产品关键单元的识别,从元动作出发,提出了一种面向复杂机械产品的多准则模糊关联综合评价的关键元动作识别方法。首先,利用“功能—运动—动作(fuction?montion?action, FMA)”的分解方法将复杂机械产品分解至最小运动单元——元动作;其次,基于不同元动作之间的运动和结构关系建立三角模糊评价矩阵,将证据理论与模糊关系结合,提出了模糊证据理论算法,实现了元动作之间不同关联信息的融合,解决了元动作之间信息模糊或缺失的问题,并在此基础上利用三角模糊数可能度关系的指标权重确定方法实现对元动作重要度的排序;最后,以国产某型号数控加工中心的转台为例,验证了该方法的合理性与有效性。研究表明:FMA分解方法从运动角度出发,可以简化整机的分解过程,有效表征产品零件的运动关系;从元动作的结构和运动关系分析元动作之间的相关性可以更好地研究元动作之间的耦合性;将证据理论带入模糊关系中进行不同元动作之间的关联信息融合,可以解决信息模糊问题。通过对元动作重要度的排序识别关键元动作,为后续对元动作单元的研究奠定了基础。

关键词: 机械产品关键元动作模糊关联信息融合三角模糊数    
Abstract:

As the core of complex mechanical product, key parts play an important role in realizing product functions. However, it is very difficult to identify key parts because of the large number of parts and their coupling relationship. In order to realize the identification of key units of product, a method of key meta-action identification for complex mechanical product based on multi-criteria fuzzy association comprehensive evaluation was proposed from the perspective of meta-action. Firstly, the complex mechanical product was decomposed into the smallest motion unit?meta-action, by using the decomposition method of fuction-montion-action (FMA); secondly, a triangular fuzzy evaluation matrix was established based on the motion and structure relationship between different meta-actions. Combining evidence theory and fuzzy relationship, a fuzzy evidence theory algorithm was proposed to achieve the fusion of different associated information between meta-actions, solve the problem of information ambiguity or missing between meta-actions. On this basis, the ranking of the importance of meta-actions was realized by using the method of determining the index weight of the possible degree relationship of triangular fuzzy numbers; finally, taking the turntable of a domestic NC (numerical control) machining center as an example, the rationality and effectiveness of the method were verified. The research showed that FMA decomposition method could simplify the decomposition process of the whole machine from the perspective of motion, and effectively characterize the motion relationship of product parts; the coupling between meta-actions could be better studied by analyzing the association between meta-actions from the structure and motion relationship of meta-actions; the problem of information fuzziness could be solved by introducing evidence theory into fuzzy relations to fuse the related information between different meta-actions. By sorting the importance of meta-actions, key meta-actions were identified, which laid a foundation for the subsequent research on meta-action units.

Key words: mechanical product    key meta-action    fuzzy association    information fusion    triangular fuzzy number
收稿日期: 2021-10-27 出版日期: 2022-11-02
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(51835001)
通讯作者: 冉琰     E-mail: 2322785410@qq.com;ranyan@cqu.edu.cn
作者简介: 李雪萍(1998—),女,四川彭山人,硕士生,从事现代质量工程、数控机床可靠性技术研究,E-mail:2322785410@qq.comhttps://orcid.org/0000-0002-6499-7861
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李雪萍
冉琰

引用本文:

李雪萍,冉琰. 多准则模糊关联的机械产品关键元动作识别[J]. 工程设计学报, 2022, 29(5): 527-536.

Xue-ping LI,Yan RAN. Key meta-action identification for mechanical product with multi-criteria fuzzy association[J]. Chinese Journal of Engineering Design, 2022, 29(5): 527-536.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.065        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I5/527

图1  FMA结构层次分解过程
零件分类定义
输入件接收邻接上游元动作或提供动力和运动的零件
中间件连接输入件和输出件并传递动力和运动的零件
输出件输出动力和运动到邻接下游元动作的零件或该元动作的运动执行件
支撑件提供装配基准,保证各零件相互位置精度的零件
紧固件连接2个或多个零件为一体,且使被连接件间无相对运动的零件
表1  元动作单元组成零件的分类及定义
图2  元动作单元结构示意
图3  关键元动作识别流程
三角模糊数模糊语义等级
(0,1,2)无关紧要的1
(2,3,4)不重要的2
(4,5,6)一般重要的3
(6,7,8)重要的4
(8,9,10)非常重要的5
表2  三角模糊数与模糊语义的对应关系
运动关联关系三角模糊数
两元动作对某一运动的实现不存在关联性(0,1,2)
一元动作对另一元动作完成同一运动的协同作用较弱(2,3,4)
一元动作对另一元动作完成同一运动的协同作用一般(4,5,6)
一元动作对另一元动作完成同一运动的协同作用较强(6,7,8)
两元动作对完成同一运动缺一不可(8,9,10)
表3  元动作运动关联性的语义描述与三角模糊数的对应关系
结构关联关系三角模糊数
两元动作不存在联系(0,1,2)
两元动作无共用件,但传递某介质(2,3,4)
两元动作有共用件,但不传递介质(4,5,6)
两元动作无共用件,但传递能量(6,7,8)
两元动作的共用件传递扭矩等能量(8,9,10)
表4  元动作结构关联性的语义描述与三角模糊数的对应关系
图4  数控转台结构1—蜗杆;2—轴承;3—隔套;4—端盖;5—止动垫圈;6—螺母;7—电机;8—联轴器;9—螺钉;10—锁紧油路;11—密封盖;12—止动垫圈;13—平键;14—蜗轮;15—螺母;16—齿轮轴;17—螺钉;18—齿轮轴轴承;19—下齿盘; 20—上齿盘;21—密封罩壳;22—轴承;23—升降油缸;24—活塞;25—螺钉;26—顶杆;27—顶杆螺钉;28—母锥;29—拉爪;30—拉钉;31—公锥;32—小弹簧;33—活塞;34—大弹簧; 35—回转体;36—托架;37—活塞;38—心轴; 39—升降油路。
图5  数控转台FMA结构化分解
A1A2A3A4A5A6
A11

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0.6

(8,9,10),0.4

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

A2

(0,1,2),0.2

(2,3,4),0.6

(4,5,6),0.2

(6,7,8),0

(8,9,10),0

1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

A3

(0,1,2),0.2

(2,3,4),0.6

(4,5,6),0.2

(6,7,8),0

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

A4

(0,1,2),0

(2,3,4),0

(4,5,6),0.4

(6,7,8),0.4

(8,9,10),0.2

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

1

(0,1,2),0.2

(2,3,4),0.8

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),0.4

(2,3,4),0.6

(4,5,6),0

(6,7,8),0

(8,9,10),0

A5

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),0.2

(2,3,4),0.8

(4,5,6),0

(6,7,8),0

(8,9,10),0

1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0.2

(8,9,10),0.8

A6

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),0.2

(2,3,4),0.8

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0.2

(8,9,10),0.8

1
表5  数控转台元动作之间运动关联关系评价结果
A1A2A3A4A5A6
A11

(0,1,2),0.6

(2,3,4),0.4

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2)0.2

(2,3,4)0.4

(4,5,6),0.4

(6,7,8),0

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

A2

(0,1,2),0.6

(2,3,4),0.4

(4,5,6),0

(6,7,8),0

(8,9,10),0

1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),1

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),1

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

A3

(0,1,2),0.2

(2,3,4),0.4

(4,5,6),0.4

(6,7,8),0

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),1

(8,9,10),0

1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),1

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

A4

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),1

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),1

(8,9,10),0

1

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

A5

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

1

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0.2

(8,9,10),0.8

A6

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),1

(2,3,4),0

(4,5,6),0

(6,7,8),0

(8,9,10),0

(0,1,2),0.2

(2,3,4),0.2

(4,5,6),0.6

(6,7,8),0

(8,9,10),0

(0,1,2),0

(2,3,4),0

(4,5,6),0

(6,7,8),0.2

(8,9,10),0.8

1
表6  数控转台元动作之间结构关联关系评价结果
A1A2A3A4A5A6
A11(0.20,1.20,2.20)(0.70,1.70,2.70)(7.31,8.31,9.31)(0.82,1.82,2.82)(0.82,1.82,2.82)
A2(1.58,2.58,3.58)1(7.36,8.36,9.36)(7.36,8.36,9.36)(0,1,2)(0,1,2)
A3(2.14,3.14,4.14)(7.36,8.36,9.36)1(7.36,8.36,9.36)(0,1,2)(0,1,2)
A4(6.51,7.51,8.51)(7.36,8.36,9.36)(7.36,8.36,9.36)1(1.95,2.95,3.95)(1.67,2.67,3.67)
A5(0.82,1.82,2.82)(0,1,2)(0,1,2)(1.95,2.95,3.95)1(7.67,8.67,9.67)
A6(0.82,1.82,2.82)(0,1,2)(0,1,2)(1.95,2.95,3.95)(7.67,8.67,9.67)1
表7  数控转台元动作之间综合关联关系评价结果
图6  数控转台元动作重要度对比
1 周宏根,景旭文,高安丽.柴油机关键零件工艺规划支持系统研究[J].组合机床与自动化加工技术,2009(6):84-87. doi:10.3969/j.issn.1001-2265.2009.06.024
ZHOU Hong-gen, JING Xu-wen, GAO An-li. The research on process planning and supporting system of the diesel engine critical parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2009(6): 84-87.
doi: 10.3969/j.issn.1001-2265.2009.06.024
2 宫中伟,莫蓉,杨海成,等.基于产品开发网络Hub节点的工程变更[J].计算机集成制造系统,2012, 18(1):40-46. doi:10.4028/www.scientific.net/amr.314-316.1607
GONG Zhong-wei, MO Rong, YANG Hai-cheng, et al. Engineering change based on Hub nodes of product development network[J]. Computer Integrated Manufacturing Systems, 2012, 18(1): 40-46.
doi: 10.4028/www.scientific.net/amr.314-316.1607
3 郏维强,刘振宇,刘达新,等.基于模糊关联的复杂产品模块化设计方法及其应用[J].机械工程学报, 2015,51(5):130-142. doi:10.3901/jme.2015.05.130
JIA Wei-qiang, LIU Zhen-yu, LIU Da-xin, et al. Modular design method and application for complex product based on fuzzy correlation analysis[J]. Journal of Mechanical Engineering, 2015, 51(5): 130-142.
doi: 10.3901/jme.2015.05.130
4 郝丽,莫蓉,魏斌斌,等.粗糙集理论在关键功能零件识别中的应用[J].哈尔滨工业大学学报,2021,53(2):61-70. doi:10.11918/202001068
HAO Li, MO Rong, WEI Bin-bin, et al. Application of rough set theory in identification of key functional parts[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 61-70.
doi: 10.11918/202001068
5 BELHADJ I, TRIGUI M, BENAMARA A. Sub-assembly generation algorithm from a CAD model[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 2829-2840. doi:10.1007/s00170-016-8637-x
doi: 10.1007/s00170-016-8637-x
6 HAN Zhou-pei, MO Rong, CHANG Zhi-yong, et al. Key assembly structure identification in complex mechanical assembly based on multi-source information[J]. Assembly Automation, 2017, 37(2): 208-218. doi:10.1108/aa-09-2016-121
doi: 10.1108/aa-09-2016-121
7 袁博.基于复杂网络的装配过程关键零件识别和故障传播评价[D].武汉:武汉理工大学,2020:42-50. doi:10.29252/jafm.13.03.30747
YUAN Bo. Identification of key parts and evaluation of fault propagation[D]. Wuhan: Wuhan University, 2020: 42-50.
doi: 10.29252/jafm.13.03.30747
8 李冬英,李梦奇,张根保,等.元动作装配单元误差源及误差传递模型研究[J].机械工程学报,2015, 51(17):146-155. doi:10.3901/jme.2015.17.146
LI Dong-ying, LI Meng-qi, ZHANG Gen-bao, et al. Mechanism analysis of deviation sourcing and propagation for meta-action assembly unit[J]. Journal of Mechanical Engineering, 2015, 51(17): 146-155.
doi: 10.3901/jme.2015.17.146
9 YU Hui, ZHANG Gen-bao, RAN Yan, et al. A reliability allocation method for mechanical product based on meta-action[J]. IEEE Transactions on Reliability, 2020, 69(1): 373-381. doi:10.1109/tr.2019.2907517
doi: 10.1109/tr.2019.2907517
10 柯磊.数控机床基于元动作的故障溯源与分析技术研究[D].重庆:重庆大学,2019:19-27.
KE Lei. Research on fault trace and analysis technology of NC machine tool based on meta action[D]. Chong-qing: Chongqing University, 2019: 19-27.
11 CHEN Yi-fan, ZHANG Gen-bao, RAN Yan. Risk analysis of coupling fault propagation based on meta-action for computerized numerical control (CNC) machine tool[J]. Complexity, 2019(8): 1-11. doi:10.1155/2019/3237254
doi: 10.1155/2019/3237254
12 RAN Yan, ZHANG Gen-bao, ZHANG Lian. Quality characteristic association analysis of computer numerical control machine tool based on meta-action assembly uni[J] Advances in Mechanical Engineering, 2016, 8(1): 1-10. doi:10.1177/1687814016629344
doi: 10.1177/1687814016629344
13 LI Dong-ying, ZHANG Gen-bao, LI Meng-qi, et al. Assembly reliability modeling technology based on meta-action[J]. Procedia CIRP, 2015, 27: 207-215. doi:10.1016/j.procir.2015.04.068
doi: 10.1016/j.procir.2015.04.068
14 李宇龙,张根保,王勇勤,等.数控机床基于元动作的FMEA分析技术研究[J].湖南大学学报(自然科学版),2019,46(10):64-75.
LI Yu-long, ZHANG Gen-bao, WANG Yong-qin, et al. Research on FMEA analysis technology based on meta-action for numerical control machine tool[J]. Journal of Hunan University (Natural Sciences), 2019, 46(10): 64-75.
15 WANG Xin, LUO Bo, SERGIO O. Application of service modular design based on a fuzzy design structure matrix: A case study from the mining industry[J]. Mathematical Problems in Engineering, 2021: 1-19. doi:10.1155/2021/5067092
doi: 10.1155/2021/5067092
16 FANG Ming, LIU Hong-wei. A Research on the Reliability allocation of complex equipment based on improved fuzzy analytic hierarchy process[C]//2013 International Conference on Industrial Engineering and Management Science (ICIEMS 2013), Shanghai, China, 2013-09-28.
17 黄智力,罗键.三角模糊数型不确定多指标决策的可能度关系法[J].控制与决策,2015,30(8): 1365-1371.
HUANG Zhi-li, LUO Jian. Possibility degree relation method for triangular fuzzy number-based uncertain multi-attribute decision making[J]. Control and Decision, 2015, 30(8): 1365-1371.
18 陈一凡,张根保,冉琰,等.面向元动作的机械传动系统可靠性分配方法[J].中国机械工程,2021,32(17):2032-2039. doi:10.3969/j.issn.1004-132X.2021.17.003
CHEN Yi-fan, ZHANG Gen-bao, RAN Yan, et al. Meta-action-oriented reliability allocation method of mechanical transmission systems[J]. China Mechanical Engineering, 2021, 32(17): 2032-2039.
doi: 10.3969/j.issn.1004-132X.2021.17.003
[1] 陆凤仪, 赵科渊, 徐格宁, 戚其松. 基于多源信息融合及模糊故障树的小子样可靠性评估[J]. 工程设计学报, 2017, 24(6): 609-617.
[2] 郑耀辉,胡付红,王明海,王晓燕. 基于FAHP及FCA的机床设备优选方法研究[J]. 工程设计学报, 2015, 22(5): 405-411.
[3] 吕刚, 范守文. 球笼式等速万向联轴器强度设计缺陷的回归辨识[J]. 工程设计学报, 2013, 20(3): 218-225.
[4] 邱继伟, 张瑞军, 丛东升, 郭 楠. 机械零件可靠性设计理论与方法研究[J]. 工程设计学报, 2011, 18(6): 401-406.
[5] 石夫乾, 孙守迁, 徐江. 基于模糊关联与BP网络的客户感性知识挖掘[J]. 工程设计学报, 2007, 14(5): 349-353.