Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 728-735    DOI: 10.3785/j.issn.1006-754X.2019.00.006
建模、仿真、分析与决策     
基于干扰观测器的波浪升沉模拟及自适应补偿策略研究
马长李1, 刘聪2, 马奔3
1.海军研究院, 北京 100161
2.中国航天系统科学与工程研究院, 北京 100089
3.中国科学院电子学研究所 苏州研究院, 江苏苏州 215123
Research on wave heave simulation and adaptive compensation strategy based on disturbance observer
MA Chang-li1, LIU Cong2, MA Ben3
1.Naval of Armament, Beijing 100161, China
2.China Aerospace Academy of Systems Science and Engineering, Beijing 100089, China
3.Suzhou Research Institute, Institute of Electronics, Chinese Academy of Sciences, Suzhou 215123, China
 全文: PDF(2989 KB)   HTML
摘要: 海洋装备的快速升级使得海上吊装应用广泛,但吊装设备易受风浪影响,导致系统控制精度降低。为提高海上吊装设备的控制精度,提出了基于干扰观测器的波浪升沉自适应反步补偿策略。以波浪升沉补偿系统为研究对象,对三级海况下的船舶升沉运动轨迹及其电液提升系统的非线性模型进行推导;利用波浪模拟平台模拟船舶的升沉运动,采用基于干扰观测器的自适应反步补偿策略对电液提升系统的非线性误差进行抑制;通过Lyapnov判据验证自适应反步补偿策略的稳定性,并通过仿真和试验对控制器性能进行验证。试验结果表明,相较于传统的PID(proportion integration differentiation,比例积分微分)控制策略,基于干扰观测器的波浪升沉自适应反步补偿策略具有更好的控制效果。对于海上吊装设备的控制系统,基于干扰观测器的自适应反步补偿策略可有效地抑制外界干扰及系统非线性干扰对控制器的影响,提高对海上吊装设备升沉运动的位置补偿精度。
关键词: 波浪补偿电液提升系统自适应控制干扰抑制    
Abstract: The rapid upgrade of marine equipment makes the sea hoisting widely used, but the hoisting equipment is susceptible to wind and waves, which reduces the control accuracy of system. To improve the control accuracy of marine hoisting system,an adaptive backstepping compensation strategy for wave heave based on disturbance observer is proposed. Taking the wave heave compensation system as the research object, the tracks of ship heave motion and the nonlinear model of the electro-hydraulic lifting system in the third-level sea condition were deduced. Ship heave motion was simulated on wave simulation platform, and the nonlinear error of the electro-hydraulic lifting system was suppressed by an adaptive backstepping compensation strategy based on the disturbance observer. The stability of the adaptive backstepping compensation strategy was proved by Lyapunov theory, and the controller performance was verified by simulation and test. Test results showed that the adaptive backstepping compensation strategy based on the disturbance observer had higher control accuracy than the traditional PID (proportion integration differentiation) controller. Aiming at the control system of marine hoisting equipment, the influence of external disturbance and system nonlinear disturbance on the controller can be effectively restrained by the adaptive backstepping compensation strategy based on the disturbance observer, so that the position compensation accuracy of heave motion of marine hoisting equipment can be increased.
Key words: wave compensation    electro-hydraulic lifting system    adaptive control    interference suppression
收稿日期: 2019-07-08 出版日期: 2019-12-28
CLC:  TH 137  
基金资助: 装备预研教育部联合基金资助项目(6141A020331)
作者简介: 马长李(1982—),男,吉林长春人,工程师,硕士,从事海军装备研究,E-mail:1259035582@qq.com, https://orcid.org/0000-0002-7875-3964
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马长李
刘聪
马奔

引用本文:

马长李, 刘聪, 马奔. 基于干扰观测器的波浪升沉模拟及自适应补偿策略研究[J]. 工程设计学报, 2019, 26(6): 728-735.

MA Chang-li, LIU Cong, MA Ben. Research on wave heave simulation and adaptive compensation strategy based on disturbance observer. Chinese Journal of Engineering Design, 2019, 26(6): 728-735.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.006        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/728

[1] 王军政, 赵江波, 汪首坤. 电液伺服技术的发展与展望[J].液压与气动,2014(5):1-12. doi: 10.11832/j.issn.1000-4858.2014.05.001 WANG Jun-zheng, ZHAO Jiang-bo, WANG Shou-kun. The development and future trends of electro-hydraulic servo technology[J]. Chinese Hydraulics & Pneumatics, 2014 (5): 1-12.
[2] GUO K, WEI J, FANG J, et al. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer[J]. Mechatronics, 2015, 27: 47-56. doi: 10.1016/j.mechatronics.2015.02.003
[3] CHENG G, ZHU S A. Derivative and integral sliding mode adaptive control for a class of nonlinear system and its application to an electro-hydraulic servo system[J]. Proceedings of the CSEE, 2005(4): 105-110. doi: 10.13334/j.0258-8013.pcsee.2005.04.019
[4] LAINIOTIS D G, PLATANIOTIS K N, MENON D, et al. Adaptive heave compensation via dynamic neural networks[C]// Proceedings of OCEANS '93, Victoria, BC, Oct. 18-21, 1993. doi:10.1109/OCEANS.1993.326005
[5] LAINIOTIS D G, ANAGNOSTOU K E. A new per-sample partitioning filter[J]. Signal Processing, 1987, 12(1): 27-47. doi: 10.1016/0165-1684(87)90080-6
[6] EL-HAWARY F, MBAMALU G A N. Dynamic heave compensation using robust estimation techniques[J]. Computers & Electrical Engineering, 1996, 22(4): 257-273. doi: 10.1016/0045-7906(96)00003-1
[7] EL-HAWARY F, AMINZADEH F, MBAMALU G A N. Computational experience with the generalized kalman filter for dynamic heave compensation[C]// Oceans '92. Mastering the Oceans Through Technology, Newport, RI: IEEE, 1992: 271-276. doi: 10.1109/OCEANS. 1992.612701
[8] KORDE U A. Active heave compensation on drill-ships in irregular waves[J]. Ocean Engineering, 1998, 25(7): 541-561. doi:10. 1016/s0029-8018(97)00028-0
[9] DO K D, PAN J. Nonlinear control of an active heave compensation system[J]. Ocean Engineering, 2008, 35(5/6): 558-571. doi: 10. 1016/j.oceaneng.2007.11.005
[10] DO K D, PAN J. Control of ships and underwater vehicles[M]. London: Springer, 2009:1-402. doi:10.1007/978-1-84882-730-1
[11] DO K D. Formation tracking control of unicycle-type mobile robots[C]// IEEE International Conference on Robotics and Automation, Roma: IEEE, 2007: 2391-2396. doi:10.1109/ROBOT.2007.363677
[12] NEUPERT J, MAHL T, HAESSIG B, et al. A heave compensation approach for offshore cranes[C]// American Control Conference, Seattle: IEEE, 2008: 538-543. doi:10.1109/ACC. 2008.4586547
[13] 席雷平, 陈自力, 齐晓慧. 基于非线性干扰观测器的机械臂自适应反演滑模控制[J].信息与控制,2013,42(4):470-477. doi:10.3724/SP.J.1219.2013.00470 XI Lei-ping, CHEN Zi-li, QI Xiao-hui. Adaptive backstepping sliding mode control for robotic manipulator with nonlinear disturbance observer[J]. Information and Control, 2013, 42(4): 470-477.
[14] 杨立一. 基于神经网络干扰观测器的终端滑模飞行控制设计[J].机械工程与自动化,2012 (4):152-154,157. doi:10.3969/j.issn.1672-6413. 2012.04.063 YANG Li-yi. Terminal sliding mode flight control design based on neural network disturbance observer[J]. Mechanical Engineering & Automation, 2012 (4): 152-154, 157.
[15] 刘柏廷, 吴云洁, 黄延福. 基于模糊干扰观测器的自适应反演滑模控制研究[J].系统仿真学报,2011,23(8):1677-1680. doi:10.16182/j.cnki. joss.2011.08.049 LIU Bo-ting, WU Yun-jie, HUANG Yan-fu. Research of adaptive backstepping sliding mode controller based on fuzzy disturbance observer[J]. Journal of System Simulation, 2011, 23(8): 1677-1680.
[16] 崔洋培, 吴庆宪, 陈谋. 基于滑模干扰观测器的空空导弹三维预测制导律设计[J].航天控制, 2015,33(2):3-8. doi:10.3969/j.issn.1006-3242. 2015.02.001 CUI Yang-pei, WU Qing-xian, CHEN Mou. Design of three-dimensional predictive guidance law for air-to-air missiles based on sliding mode disturbance observer[J]. Aerospace Control, 2015, 33(2): 3-8.
[17] 李继东. 电液伺服并联六自由度船舶模拟器控制研究[D].秦皇岛:燕山大学机械工程学院,2015:1-122. LI Ji-dong. Research on control of 6-DOF ship simulator with electro-hydraulic servo parallel connection[D]. Qinhuangdao: Yanshan University, School of Mechaical Engineering, 2015: 1-122.
[18] 汪亭玉, 梁忠诚. 一种模拟波浪中船载光通信机运动的实验平台[J].中国造船,2009,50(4):127-134. doi:10.3969/j.issn.1000-4882.2009.04. 017 WANG Ting-yu, LIANG Zhong-cheng. An experimental platform of ship movement simulation for free space optical communication[J]. Shipbuilding of China, 2009, 50(4): 127-134.
[1] 王飞, 龚国芳, 秦永峰. 转速受限条件下TBM刀盘混合驱动系统控制器设计[J]. 工程设计学报, 2019, 26(6): 722-727.
[2] 陈浩, 吴定定, 饶国希, 赵旭昌. 电动负载模拟系统自适应控制系统设计[J]. 工程设计学报, 2017, 24(2): 217-224.
[3] 刘智光,于 菲,张 靓,李铁军,安占法. 基于模糊自适应阻抗控制的机器人接触力跟踪[J]. 工程设计学报, 2015, 22(6): 569-574.
[4] 马明智, 芮延年, 张飞, 乔冬冬. 基于可拓自适应理论的三轴并联机器人控制系统设计[J]. 工程设计学报, 2012, 19(1): 53-56.
[5] 刘峰, 龚国芳, 石元奇, 朱北斗. 基于自适应控制技术的盾构掘进监控系统[J]. 工程设计学报, 2010, 17(4): 302-306.
[6] 李鸣, 胡先志, 付辉, 黄惠娟. 基于电加热炉的温度控制策略[J]. 工程设计学报, 2007, 14(6): 482-485.