Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (6): 865-874    DOI: 10.3785/j.issn.1006-754X.2025.05.139
摩擦学与表面/界面技术     
非对称性织构化密封端面的空化行为及密封性能研究
崔旭冉1(),张磊1,耿翔宇1,胡正东2,闫伟3,乔印虎4,时礼平1,李蒙1()
1.安徽工业大学 机械工程学院,安徽 马鞍山 243002
2.合肥大学 先进制造工程学院,安徽 合肥 230601
3.安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000
4.安徽科技学院 智能制造学院,安徽 凤阳 233100
Research on cavitation behavior and sealing performance of asymmetric textured sealing end faces
Xuran CUI1(),Lei ZHANG1,Xiangyu GENG1,Zhengdong HU2,Wei YAN3,Yinhu QIAO4,Liping SHI1,Meng LI1()
1.School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243002, China
2.School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China
3.School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China
4.College of Intelligent Manufacturing, Anhui Science and Technology University, Fengyang 233100, China
 全文: PDF(7937 KB)   HTML
摘要:

为研究机械密封中非对称性沟槽对空化演变及密封性能的影响,设计并制备了平底对称性沟槽和左、右倾斜非对称性沟槽;同时,通过试验与数值模拟相结合的方法,研究了不同工况下非对称性织构化密封端面的空化行为、液膜压力与相态分布以及密封性能。结果表明:左倾斜非对称性设计增大了沟槽的空化面积,与平底沟槽相比,增幅约为21.3%;而右倾斜非对称性设计能有效抑制沟槽的空化行为,其空化面积的降幅可达44.9%。在密封性能方面,左、右倾斜非对称性设计均能抑制端面泄漏,泄漏量的降幅分别约为20.4%和40.7%,但其界面摩擦学特性却存在显著差异:左倾斜沟槽使密封端面的摩擦力矩约增大了30.8%,而右倾斜沟槽使密封端面的摩擦力矩约减小了42.6%。由此说明,右倾斜结构的渐扩设计延缓了沟槽入口处的截面突扩行为,促使流体能够更好地贴附壁面流动,减少了边界层流体脱离现象,有效地抑制了低压区的形成,减小了空化面积。此外,较小的空化面积不仅增强了沟槽单元的流体动压效应和液膜承载能力,改善了界面摩擦学特性,还促进了沟槽出口处稳定高压密封坝的形成,减少了泄漏通道。研究结果可为机械密封端面的优化设计提供重要参考。

关键词: 机械密封非对称性沟槽空化面积密封性能    
Abstract:

To investigate the influence of asymmetric grooves on cavitation evolution and sealing performance of mechanical seals, the flat-bottom symmetric grooves and left-tilted and right-tilted asymmetric grooves were designed and fabricated. Meanwhile, a combination method of experiments and numerical simulations was employed to analyze cavitation behavior, liquid film pressure and phase distribution, as well as the sealing performance of asymmetric textured sealing end faces under varying operating conditions. The results showed that the left-tilted asymmetric design increased the cavitation area of the groove by approximately 21.3% compared to the flat-bottom groove, whereas the right-tilted asymmetric design suppressed the cavitation behavior of the groove, with a reduction of cavitation area up to 44.9%. Regarding sealing performance, both the left-tilted and right-tilted asymmetric designs contributed to suppressing end face leakage, achieving leakage reductions of approximately 20.4% and 40.7%, respectively. However, their tribological behaviors differed markedly: the left-tilted groove increased the frictional torque of the sealing end face by approximately 30.8%, whereas the right-tilted groove led to a reduction of about 42.6%. It was concluded that the gradually expanding design of the right-tilted structure mitigated the abrupt cross-sectional expansion at the groove inlet, enabling the fluid to better adhere to the groove wall and reducing boundary layer separation. This mechanism effectively inhibitd the formation of low-pressure regions, thereby reducing cavitation area. Furthermore, the smaller cavitation area enhanced the hydrodynamic pressure effect within the groove unit and the liquid film bearing capacity, thereby improving interfacial tribological performance. Additionally, a stable high-pressure sealing dam was formed at the groove outlet, thereby reducing leakage pathways. The research results can provide significant references for the optimal design of mechanical seal end faces.

Key words: mechanical seal    asymmetric grooves    cavitation area    sealing performance
收稿日期: 2025-05-12 出版日期: 2025-12-30
CLC:  TH 117.2  
基金资助: 国家自然科学基金资助项目(52205178);安徽省高校协同创新项目(GXXT-2023-022)
通讯作者: 李蒙     E-mail: 15039446163@163.com;limeng@ahut.edu.cn
作者简介: 崔旭冉(2001—),男,硕士生,从事机械密封摩擦与泄漏研究,E-mail: 15039446163@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔旭冉
张磊
耿翔宇
胡正东
闫伟
乔印虎
时礼平
李蒙

引用本文:

崔旭冉,张磊,耿翔宇,胡正东,闫伟,乔印虎,时礼平,李蒙. 非对称性织构化密封端面的空化行为及密封性能研究[J]. 工程设计学报, 2025, 32(6): 865-874.

Xuran CUI,Lei ZHANG,Xiangyu GENG,Zhengdong HU,Wei YAN,Yinhu QIAO,Liping SHI,Meng LI. Research on cavitation behavior and sealing performance of asymmetric textured sealing end faces[J]. Chinese Journal of Engineering Design, 2025, 32(6): 865-874.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.139        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I6/865

图1  动环试样
图2  静环试样制备
参数数值参数数值
内径Ri/mm14.4槽角θ1/(°)9
外径Ro/mm20.2堰角θ2/(°)21
槽长L/mm4.5液膜厚度h0/μm5
槽宽B/mm2.1沟槽深度h1/μm21
单个槽宽B1/mm0.3台阶深度h2/μm3
中心角φ/(°)30面积率Sp/%15.4
表1  沟槽结构参数
图3  静环表面沟槽的三维形貌
图4  高速机械密封试验台
参数数值
出口压力/MPa0.10
进口压力/MPa0.18~0.22
动力黏度/(Pa·s)4.025×10-5
温度/℃25
轴向载荷/N100
转速/(r/min)500~2 500
表2  试验工况参数
图5  不同转速和进口压力下密封端面的泄漏量
图6  不同转速和进口压力下密封端面的摩擦力矩
图7  不同转速和进口压力下密封端面的温升
图8  不同沟槽的空化面积
图9  不同沟槽的空化行为演变图
图10  不同转速和进口压力下沟槽的空化面积比
图11  计算单元区域的边界条件设置
图12  液膜压力、截面流线和液膜相态分布
图13  沟槽空化面积比的试验值与仿真值对比
  
[1] CHÁVEZ A, DE SANTIAGO O. Determining a pressure response function of the hose and sensor arrangement for measurements of dynamic pressure in a dry gas seal film[J]. Tribology International, 2020, 143: 106007.
[2] LI X P, YANG Z M, XU J C, et al. The fractal leakage model of contact mechanical seals considering wear and thermal deformation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(11): 521.
[3] GU B Q, ZHOU J F, CHEN Y, et al. Frictional heat transfer regularity of the fluid film in mechanical seals[J]. Science in China Series E: Technological Sciences, 2008, 51(5): 611-623.
[4] LIU F Y, LI Y F, YU B, et al. Experimental research on sealing performance of liquid film seal with herringbone-grooved composite textures[J]. Tribology International, 2023, 178: 108005.
[5] SHI L P, WEI W, WANG T, et al. Experimental investigation of the effect of typical surface texture patterns on mechanical seal performance[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(5): 227.
[6] BRUNETIÈRE N, ROUILLON M. Fluid flow regime transition in water lubricated spiral grooved face seals[J]. Tribology International, 2021, 153: 106605.
[7] MENG X K, BAI S X, PENG X D. Lubrication film flow control by oriented dimples for liquid lubricated mechanical seals[J]. Tribology International, 2014, 77: 132-141.
[8] 王玉明, 刘伟, 刘莹. 非接触式机械密封基础研究现状与展望[J]. 液压气动与密封, 2011, 31(2): 29-33.
WANG Y M, LIU W, LIU Y. Current research and developing trends on non-contacting mechanical seals[J]. Hydraulics Pneumatics & Seals, 2011, 31(2): 29-33.
[9] 薛婷, 王瑜, 张凯, 等. 非接触式端面密封流体动压效应的研究进展[J]. 钻探工程, 2023, 50(): 38-43.
XUE T, WANG Y, ZHANG K, et al. Research on progress of hydrodynamic pressure effect of non-contact face seal[J]. Drilling Engineering, 2023, 50(): 38-43.
[10] CHEN T Y, JI J H, FU Y H, et al. Tribological performance of UV picosecond laser multi-scale composite textures for C/SiC mechanical seals: theoretical analysis and experimental verification[J]. Ceramics International, 2021, 47(16): 23162-23180.
[11] ZHANG N, LI Z T, JIANG S Q, et al. Investigation on tribological performance of lubricating film with chevron texture[J]. Tribology Transactions, 2023, 66(1): 8-22.
[12] AHMED A, MASJUKI H H, VARMAN M, et al. An overview of geometrical parameters of surface texturing for piston/cylinder assembly and mechanical seals[J]. Meccanica, 2016, 51(1): 9-23.
[13] 郝木明, 庄媛, 章大海, 等. 考虑空化效应的螺旋槽液膜密封特性数值研究[J]. 中国石油大学学报(自然科学版), 2015, 39(3): 132-137.
HAO M M, ZHUANG Y, ZHANG D H, et al. Numerical study on sealing performance of spiral groove liquid film seal considering effects of cavitation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 132-137.
[14] 彭旭东, 金杰, 孟祥铠, 等. 汽液两相流机械密封的研究进展[J]. 摩擦学学报(中英文), 2019, 39(5): 643-655.
PENG X D, JIN J, MENG X K, et al. Research progress on the liquid face seal of vapor-liquid two-phase flow[J]. Tribology, 2019, 39(5): 643-655.
[15] GAD A M, NEMAT-ALLA M M, KHALIL A A, et al. On the optimum groove geometry for herringbone grooved journal bearings[J]. Journal of Tribology, 2006, 128(3): 585-593.
[16] 王涛, 黄伟峰, 王玉明. 机械密封液膜汽化问题研究现状与进展[J]. 化工学报, 2012, 63(11): 3375-3382.
WANG T, HUANG W F, WANG Y M. Research and progress of mechanical seals operating with vaporization transition[J]. CIESC Journal, 2012, 63(11): 3375-3382.
[17] BAI S X, HAO J L, YANG J, et al. Gas-liquid mass transfer behavior of upstream pumping mechanical face seals[J]. Materials, 2022, 15(4): 1482.
[18] 李振涛, 黄佰朋, 郝木明, 等. 周向斜面台阶螺旋槽液膜密封流体动压性能[J]. 化工学报, 2017, 68(5): 2016-2026.
LI Z T, HUANG B P, HAO M M, et al. Hydrodynamic performance of liquid film seals in circumferential beveled-step spiral grooves[J]. CIESC Journal, 2017, 68(5): 2016-2026.
[19] 许华林, 阳浩东, 李雯, 等. 阶梯螺旋槽端面密封摩擦学性能数值研究[J]. 摩擦学学报(中英文), 2025, 45(5): 770-781.
XU H L, YANG H D, LI W, et al. Numerical study on tribological performance of stepped spiral groove face seal[J]. Tribology, 2025, 45(5): 770-781.
[20] 史俊, 陈小亚, 李蒙, 等. 表面织构底部构形对液体润滑机械密封性能的影响[J]. 安徽工业大学学报(自然科学版), 2023, 40(2): 144-150.
SHI J, CHEN X Y, LI M, et al. Effect of bottom configuration of surface texture on performance of liquid lubricated mechanical seals[J]. Journal of Anhui University of Technology (Natural Science), 2023, 40(2): 144-150.
[21] YIN H Z, CHEN W G, XIA D S, et al. Friction properties of graphite coating deposited on wedge-shaped textured aluminum alloys prepared by 3D printing[J]. Journal of Materials Research and Technology, 2022, 20: 4452-4472.
[22] 杨宇, 杨发展, 姜芙林, 等. 内部结构非对称织构对材料表面的润滑性能分析[J]. 中国表面工程, 2024, 37(1): 240-253.
YANG Y, YANG F Z, JIANG F L, et al. Analysis of the lubricating properties of the internal structure asymmetric microtexture on the material surface[J]. China Surface Engineering, 2024, 37(1): 240-253.
[23] LI Z T, HAO M M, SUN X H, et al. Experimental study of cavitation characteristic of single-row reverse spiral groove liquid-film seals[J]. Tribology International, 2020, 141: 105782.
[24] 武怀彪, 潘家保, 汪奥. 织构设计对润滑脂密封副密封特性影响的数值模拟[J]. 表面技术, 2023, 52(4): 155-163, 191.
WU H B, PAN J B, WANG A. Numerical simulation of effect of texture design on sealing characteristics of grease sealing pair[J]. Surface Technology, 2023, 52(4): 155-163, 191.
[25] MA X Z, MENG X K, WANG Y M, et al. Suction effect of cavitation in the reverse-spiral-grooved mechanical face seals[J]. Tribology International, 2019, 132: 142-153.
[26] 马学忠, 孟祥铠, 王玉明, 等. 雷列台阶-环槽端面密封机理与性能研究[J]. 摩擦学学报(中英文), 2016, 36(5): 585-591.
MA X Z, MENG X K, WANG Y M, et al. Mechanism and performance of end face seal of Rayleigh steps and annular grooves[J]. Tribology, 2016, 36(5): 585-591.
[1] 邱海涛,王晓燕,胡鼎国,胡洋,李双喜. 基于蠕变模型的波形弹簧弹力衰减特性分析及寿命预测研究[J]. 工程设计学报, 2025, 32(3): 413-420.
[2] 章亦聪, 朱玮, 吴玉国, 时礼平. 莱洛三角形微孔织构化端面密封性能数值模拟[J]. 工程设计学报, 2020, 27(1): 103-110.
[3] 沈国强, 孔凡胜, 潘雅琼, 吴欣, 施明烁. 唇形密封圈静密封性能快速仿真流程定制技术研究[J]. 工程设计学报, 2019, 26(1): 8-14.
[4] 胡征宇, 吴大转, 王乐勤. 船用高压组合机械密封装置的设计[J]. 工程设计学报, 2005, 12(1): 24-27.