机械零部件与装备设计 |
|
|
|
|
橡胶改性酚醛树脂基摩擦片性能研究 |
张煜焜1( ),赵早君2,蒋琦峰2,翁越平2,徐兵1,杨华勇1,陈哲1( ) |
1.浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310058 2.铁流股份有限公司,浙江 杭州 311103 |
|
Research on performance of rubber modified phenolic resin matrix friction plates |
Yukun ZHANG1( ),Zaojun ZHAO2,Qifeng JIANG2,Yueping WENG2,Bing XU1,Huayong YANG1,Zhe CHEN1( ) |
1.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China 2.Tieliu Co. , Ltd. , Hangzhou 311103, China |
引用本文:
张煜焜,赵早君,蒋琦峰,翁越平,徐兵,杨华勇,陈哲. 橡胶改性酚醛树脂基摩擦片性能研究[J]. 工程设计学报, 2025, 32(4): 569-578.
Yukun ZHANG,Zaojun ZHAO,Qifeng JIANG,Yueping WENG,Bing XU,Huayong YANG,Zhe CHEN. Research on performance of rubber modified phenolic resin matrix friction plates[J]. Chinese Journal of Engineering Design, 2025, 32(4): 569-578.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.138
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/569
|
[1] |
BIJWE J, NIDHI, MAJUMDAR N, et al. Influence of modified phenolic resins on the fade and recovery behavior of friction materials[J]. Wear, 2005, 259(7/8/9/10/11/12): 1068-1078.
|
[2] |
KRYACHEK V M. Friction composites: traditions and new solutions (review). Part 2. Composite materials[J]. Powder Metallurgy and Metal Ceramics, 2005, 44(1/2): 5-16.
|
[3] |
NILOV A S, KULIK V I, GARSHIN A P. Analysis of friction materials and technologies developed to make brake shoes for heavily loaded brake systems with disks made of a ceramic composite[J]. Refractories and Industrial Ceramics, 2015, 56(4): 402-412.
|
[4] |
LIU Y, BAO J S, HU D Y, et al. A review on the research progress of nano organic friction materials[J]. Recent Patents on Nanotechnology, 2016, 10(1): 11-19.
|
[5] |
XIAO X M, YIN Y, BAO J S, et al. Review on the friction and wear of brake materials[J]. Advances in Mechanical Engineering, 2016, 8(5): 1687814016647300.
|
[6] |
ADEM A A, PANJIAR H, DANIEL B S S. The effect of nanocarbon inclusion on mechanical, tribological, and thermal properties of phenolic resin-based composites: an overview[J]. Engineering Reports, 2024, 6(4): e12861.
|
[7] |
AHDY M A, ALI M K A, MOURAD M, et al. Review of automotive brake lining materials and their tribological properties[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236(7): 1445-1465.
|
[8] |
ILANKO A K, VIJAYARAGHAVAN S. Wear behavior of asbestos-free eco-friendly composites for automobile brake materials[J]. Friction, 2016, 4(2): 144-152.
|
[9] |
SINGARAVELU D L, VIJAY R, FILIP P. Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites[J]. Wear, 2019, 426: 1129-1141.
|
[10] |
LI D X, HU X, HUANG Z H, et al. Effect of several modifiers on the mechanical and tribological properties of phenol formaldehyde resin[J]. High Performance Polymers, 2018, 30(5): 580-590.
|
[11] |
MURA A, ADAMO F, WANG H Z, et al. Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene[J]. Tribology International, 2019, 134: 335-340.
|
[12] |
DING M J, DENG Z Y, HUANG Z X, et al. Recovery of polyimide waste film by mechanical method to improve the heat fade resistance of BPR matrix friction composites[J]. Wear, 2022, 502: 204398.
|
[13] |
SHIN M W, CHO K H, LEE W K, et al. Tribological characteristics of binder resins for brake friction materials at elevated temperatures[J]. Tribology Letters, 2010, 38(2): 161-168.
|
[14] |
谢茂青, 王雷刚. 六钛酸钾晶须增强汽车干式离合器摩擦片的热衰退和振颤特性[J]. 粉末冶金材料科学与工程, 2020, 25(6): 520-526. XIE M Q, WANG L G. Thermal degradation and judder characteristics of the friction facing for automobile dry clutch enhanced by potassium hexatitanate whisker[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6): 520-526.
|
[15] |
杜嘉俊, 朱永梅, 谭雪龙, 等. 树脂基复合材料摩擦片摩擦学性能研究[J]. 摩擦学学报, 2017, 37(5): 574-580. DU J J, ZHU Y M, TAN X L, et al. Tribological properties of resin matrix composites[J]. Tribology, 2017, 37(5): 574-580.
|
[16] |
屈盛官, 袁志敏, 赖福强, 等. 中重型车辆离合器摩擦副材料的高温摩擦磨损性能[J]. 中南大学学报(自然科学版), 2018, 49(5): 1087-1094. QU S G, YUAN Z M, LAI F Q, et al. Friction and wear properties for clutch friction materials in medium-heavy-duty vehicle at high temperature[J]. Journal of Central South University (Science and Technology), 2018, 49(5): 1087-1094.
|
[17] |
SATAPATHY B K, BIJWE J. Performance of friction materials based on variation in nature of organic fibres Part Ⅱ. Optimisation by balancing and ranking using multiple criteria decision model (MCDM)[J]. Wear, 2004, 257(5/6): 585-589.
|
[18] |
ALEKSENDRIĆ D, DUBOKA Č. Fade performance prediction of automotive friction materials by means of artificial neural networks[J]. Wear, 2007, 262(7/8): 778-790.
|
[19] |
YAN Z F, LI H S, LEI H R, et al. Study of the judder characteristics of friction material for an automobile clutch and test verification[J]. Chinese Journal of Mechanical Engineering, 2023, 36(1): 53.
|
[20] |
徐祥, 杨明, 张世伟, 等. 有机复合摩擦材料的成分优化及其对摩擦性能的影响[J]. 材料导报, 2017, 31: 447-450. XU X, YANG M, ZHANG S W, et al. Composition optimization of organic composite friction materials and its influence on friction properties[J]. Materials Reports, 2017, 31: 447-450.
|
[21] |
王雄, 张德震, 陆士平. 氯丙烯改性甲阶酚醛树脂的性能[J]. 华东理工大学学报(自然科学版), 2016, 42(5): 639-643. WANG X, ZHANG D Z, LU S P. Properties of allyl chloride modified resole resin[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(5): 639-643.
|
[22] |
胡先刚. 玄武岩微纤维表面改性增强酚醛树脂复合材料及摩擦性能研究[D]. 南京: 东南大学, 2019. HU X G. Study on surface modification and friction properties of basalt microfiber reinforced phenolic resin composites[D]. Nanjing: Southeast University, 2019.
|
[23] |
文国富, 王秀飞, 尹彩流, 等. 碳酸钙晶须含量对橡胶基摩擦材料性能的影响[J]. 机械工程材料, 2017, 41(4): 80-83, 88. WEN G F, WANG X F, YIN C L, et al. Effect of calcium carbonate whisker content on properties of rubber based friction materials[J]. Materials for Mechanical Engineering, 2017, 41(4): 80-83, 88.
|
[24] |
DERAKHSHANDEH B, SHOJAEI A, FAGHIHI M. Effects of rubber curing ingredients and phenolic-resin on mechanical, thermal, and morphological characteristics of rubber/phenolic-resin blends[J]. Journal of Applied Polymer Science, 2008, 108(6): 3808-3821.
|
[25] |
李萍, 石磊, 李晓燕, 等. 酚醛摩擦材料研究进展[J]. 工程塑料应用, 2016, 44(9): 145-148. LI P, SHI L, LI X Y, et al. Research progress of phenolic friction materials[J]. Engineering Plastics Application, 2016, 44(9): 145-148.
|
[26] |
LI S, HAN Y, CHEN F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability, 2016, 124: 68-76.
|
[27] |
陈晨,付业伟,李贺军,等.丁腈橡胶含量对橡胶/树脂双基体摩擦材料性能的影响[J].润滑与密封,2016,41(1):43-49. CHEN C, FU Y W, LI H J, et al. Effect of Nitrile Butadiene Rubber Content on the Performance of Rubber/Resin Matrix Composite Friction Materials[J]. Lubrication Engineering, 2016,41(1):43-49.
|
[28] |
姚冠新, 罗玲, 王玉玲. 钼酸铵–丁腈橡胶复合改性酚醛树脂的制备[J]. 工程塑料应用, 2015, 43(11): 17-21. YAO G X, LUO L, WANG Y L. Preparation of modified phenolic resin with ammonium molybdate and rubber nitrile[J]. Engineering Plastics Application, 2015, 43(11): 17-21.
|
[29] |
李勃, 周计明, 齐乐华, 等. 丁腈橡胶对腰果壳油改性酚醛树脂基摩擦材料性能的影响[J]. 润滑与密封, 2016, 41(2): 42-46, 111. LI B, ZHOU J M, QI L H, et al. Effect of nitrile rubber on properties of cashew-modified phenolic resin-based friction materials[J]. Lubrication Engineering, 2016, 41(2): 42-46, 111.
|
[30] |
崔功军, 鲁张祥, 韩俊瑞, 等. 改性酚醛树脂对摩擦片制动性能的影响[J]. 矿山机械, 2018, 46(1): 53-58. CUI G J, LU Z X, HAN J R, et al. Influence of modified phenolic resin on braking performance of friction disc[J]. Mining & Processing Equipment, 2018, 46(1): 53-58.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|