Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (3): 319-331    DOI: 10.3785/j.issn.1006-754X.2024.03.177
机器人与机构设计     
经支气管诊疗机器人设计及其柔性末端执行器位姿研究
张艳平1(),姜洁1,2(),付治国1,姜晓宇1,王泊鸥1
1.辽宁工程技术大学 机械工程学院,辽宁 阜新 123000
2.中国科学院深圳先进技术研究院 医疗机器人与微创手术器械研究中心,广东 深圳 518067
Design of transbronchial diagnosis robot andresearch on pose of flexible end-effector
Yanping ZHANG1(),Jie JIANG1,2(),Zhiguo FU1,Xiaoyu JIANG1,Boou WANG1
1.School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
2.Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518067, China
 全文: PDF(8885 KB)   HTML
摘要:

经呼吸道活检是肺结节诊断中较为常见的手术,但由于呼吸道疾病存在传染风险以及手动操作时关节受限等,医工结合的诊疗方式逐渐成为发展趋势。为实现柔性体在支气管腔道内复杂弯曲动态环境下灵活运动、精准定位与稳定介入,采用主从协同式远程控制机器人机构设计,模拟传统手术中医生的操作习惯,设计并搭建能够操控支气管镜、活检钳的集成机构原理样机,以实现经支气管进行微创诊疗的双器械协同操控。然后,基于Cosserat杆理论,利用MATLAB软件对机器人柔性末端执行器的力-位映射关系、位姿和工作空间进行仿真求解,并通过实验分析机器人柔性末端执行器在经支气管的远程微创活检手术中的真实位姿以及机器人的实际运行效果,验证了仿真结果的准确性。研究结果可为经自然腔道活检术的多器械协同控制提供理论基础。

关键词: 双器械协同Cosserat杆理论力-位映射关系位姿分析微创活检    
Abstract:

Transrespiratory biopsy is a common surgery for diagnosing pulmonary nodules. However, due to the risk of infection of respiratory diseases and joint restrictions during manual operation, the diagnosis and treatment method combined with medical and engineering has gradually become a development trend. In order to realize the flexible movement, precise positioning and stable intervention of the flexible body in the complex bending and dynamic environment of the bronchial lumen, a master-slave collaborative remote control robot mechanism design was adopted to simulate the doctor's operating habits in traditional surgery, and an integrated mechanism principle prototype that could simultaneously control the bronchoscope and biopsy forceps was designed and build, which realized the dual-machine cooperative control for minimally invasive diagnosis and treatment through the bronchus. Then, based on the Cosserat rod theory, the force-position mapping relationship, pose and working space of the flexible end-effector of the robot were simulated and solved by MATLAB software, and the real pose of the flexible end-effector of the robot in the remote minimally invasive biopsy operation through the bronchus was analyzed by experiments, as well as the actual operation effect of the robot, which verified the accuracy of simulation results. The research results can provide a theoretical basis for multi-instrument collaborative control of transnatural duct biopsy.

Key words: dual-device collaboration    Cosserat rod theory    force-position mapping relationship    pose analysis    minimally invasive biopsy
收稿日期: 2023-06-13 出版日期: 2024-06-27
CLC:  TH 777  
基金资助: 国家自然科学基金资助项目(U21A20480)
通讯作者: 姜洁     E-mail: 641494756@qq.com;jiang42254219@163.com
作者简介: 张艳平(1975—),女,河北唐山人,讲师,硕士,从事工业设计、产品设计研究,E-mail: 641494756@qq.com,https://orcid.org/0009-0006-1621-3360
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张艳平
姜洁
付治国
姜晓宇
王泊鸥

引用本文:

张艳平,姜洁,付治国,姜晓宇,王泊鸥. 经支气管诊疗机器人设计及其柔性末端执行器位姿研究[J]. 工程设计学报, 2024, 31(3): 319-331.

Yanping ZHANG,Jie JIANG,Zhiguo FU,Xiaoyu JIANG,Boou WANG. Design of transbronchial diagnosis robot andresearch on pose of flexible end-effector[J]. Chinese Journal of Engineering Design, 2024, 31(3): 319-331.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.177        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/319

图1  经支气管诊疗机器人的柔性末端执行器
末端执行器功能自由度执行方式行程
支气管镜

视觉

导航

3轴向移动(600±25)mm
径向旋转±180°
绳驱控弯-130°~160°
活检钳夹取病理样本2递送、撤出≤2 300 mm
张开、夹持0~15 mm

螺旋盘绕

(被动)

6.5×360°
表1  经支气管诊疗机器人的功能分析
图2  经支气管诊疗机器人机构设计与运动学分析
图3  经支气管诊疗机器人系统框架
图4  经支气管诊疗机器人电控元器件的选型与布局
图5  支气管镜柔性导管弯曲段的内部结构
图6  柔性末端执行器仿真实验框架
图7  柔性末端执行器的受力分析及其仿真模型
图8  柔性末端执行器运动状态的仿真结果(0—5 s)
图9  柔性末端执行器能量转化仿真结果
图10  柔性末端执行器力-位映射关系的仿真结果
图11  柔性末端执行器运动轨迹动态仿真结果
图12  柔性末端执行器的工作空间及其分布概率
图13  经支气管诊疗机器人实物图
图14  柔性末端执行器力-位映射关系测试实验平台及原理
图15  柔性末端执行器力-位映射关系的实验结果
图16  柔性末端执行器位姿及工作空间标定实验平台
图17  电磁传感器安装示意图
图18  柔性末端执行器位姿及工作空间的标定结果与仿真结果的对比
图19  经支气管诊疗机器人性能验证实验流程
图20  经支气管诊疗机器人性能验证实验平台
图21  柔性末端执行器的径向旋转角度—时间曲线
图22  柔性末端执行器的轴向位移—时间曲线
参数测试结果
径向旋转轴向移动
运动形式往复回转往复推进
测试时间40 s30 s
行程180°210 mm
误差-0.472°~0.365°-0.06~0.06 mm
表2  经支气管诊疗机器人性能测试结果
1 GRAETZEL C F, SHEEHY A, NOONAN D P. Robotic bronchoscopy drive mode of the Auris Monarch platform[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal, May 20-24, 2019.
2 GINOYA T, MADDAHI Y, ZAREINIA K. A historical review of medical robotic platforms[J]. Journal of Robotics, 2021, 2021: 6640031.
3 刘丹.华西医院完成全国首例国产机器人辅助经支气管镜肺结节活检术[J].首都食品与医药,2022,29(8):6-7. doi:10.3969/j.issn.1005-8257.2022.08.005
LIU D. West China Hospital completed the first domestic robot-assisted transbronchoscopic lung nodule biopsy in China[J]. Capital Food Medicine, 2022, 29(8): 6-7.
doi: 10.3969/j.issn.1005-8257.2022.08.005
4 白冲.支气管镜新技术在肺小结节诊断中的应用[J].诊断学理论与实践,2018,17(5):499-503.
BAI C. Application of new technology of bronchoscopy in the diagnosis of small pulmonary nodules[J]. Journal of Diagnostics Concepts & Practice, 2018, 17(5): 499-503.
5 王婷,张杰.机器人支气管镜技术在肺结节诊断中的应用[J].中华结核和呼吸杂志,2021,44(12):1115-1119. doi:10.3760/cma.j.cn112147-20210827-00596
WANG T, ZHANG J. Application of robotic-assisted bronchoscopy in the diagnosis of peripheral lung lesions[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2021, 44(12): 1115-1119.
doi: 10.3760/cma.j.cn112147-20210827-00596
6 魏巍,庄哲明,唐昭,等.基于 3-RSR 并联机构的蛇形机器人本体构型设计与运动性能研究[J].机械工程学报, 2021,57(23):21-33. doi:10.3901/JME.2021.23.021
WEI W, ZHUANG Z M, TANG Z, et al. Body configuration design and kinematic performance research of snake-like robot based on 3-RSR parallel mechanism[J]. Journal of Mechanical Engineering, 2021, 57(23): 21-33.
doi: 10.3901/JME.2021.23.021
7 徐灵敏,叶伟,李秦川.并联机器人逆动力学建模的几何代数方法[J].机械工程学报,2022,58(7):1-11. doi:10.3901/jme.2022.07.001
XU L M, YE W, LI Q C. Geometric algebra-based method for inverse dynamic modeling of parallel robots[J]. Journal of Mechanical Engineering, 2022, 58(7): 1-11.
doi: 10.3901/jme.2022.07.001
8 JANABI S F, JALALI A, WALKER I D. Cosserat rod-based dynamic modeling of tendon-driven continuum robots: a tutorial[J]. IEEE Access, 2021, 9: 68703-68719.
9 TILL J, ALOI V, RUCKER C. Real-time dynamics of soft and continuum robots based on Cosserat rod models[J]. The International Journal of Robotics Research, 2019, 38(6): 723-746.
10 ALQUMSAN A A, KHOO S, NORTON M. Robust control of continuum robots using Cosserat rod theory[J]. Mechanism and Machine Theory, 2019, 131: 48-61.
11 MATHEW A T, HMIDA I B, ARMANINI C, et al. SoRoSim: a MATLAB toolbox for soft robotics based on the geometric variable-strain approach[J]. IEEE Robotics & Automation Magazine, 2023, 30(3): 106-122.
12 SANTINA C D, DURIEZ C, RUS D. Model based control of soft robots: a survey of the state of the art and open challenges[EB/OL]. (2021-10-04)[2023-06-01]. .
13 马健.主从遥操作机器人位姿态误差分析及力位补偿研究[D].天津:天津工业大学,2019.
MA J. Position and attitude error analysis and force position compensation research of master-slave teleoperation robot[D]. Tianjin: Tianjin University of Technology, 2019.
14 杨静宁,王其晨,王永祥.形状记忆合金悬臂梁变形特性分析[J].甘肃科学学报,2019,31(1):12-16,27.
YANG J N, WANG Q C, WANG Y X. Shape memory alloy cantilever beam deformation characteristics[J]. Journal of Gansu Sciences, 2019, 31(1): 12-16, 27.
15 CHAUTEMS C, TONAZZINI A, BOEHLER Q, et al. Magnetic continuum device with variable stiffness for minimally invasive surgery[J]. Advanced Intelligent Systems, 2020, 2(6): 1900086.
16 TROISE M, GAIDANO M, PALMIERI P, et al. Preliminary analysis of a lightweight and deployable soft robot for space applications[J]. Applied Sciences, 2021, 11(6): 2558.
17 秦慧峰,赵永刚.非线性本构关系下圆板的大挠度问题[J].力学研究,2020,9(2):77-84.
QIN H F, ZHAO Y G. Large deflection of circular plate under nonlinear constitutive relations[J]. International Journal of Mechanics Research, 2020, 9(2): 77-84.
No related articles found!