Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (6): 779-788    DOI: 10.3785/j.issn.1006-754X.2023.03.121
建模、仿真、分析与决策     
超高压往复泵液力端的流体激振力研究
张文益(),李斌(),石昌帅
西南石油大学 机电工程学院,四川 成都 610500
Research on fluid excitation force at the hydraulic end of ultra-high pressure reciprocating pump
Wenyi ZHANG(),Bin LI(),Changshuai SHI
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(4934 KB)   HTML
摘要:

目前,针对往复泵的振动研究主要集中在动力端的曲轴以及曲柄连杆机构上,缺乏对液力端流致振动的研究。然而,超高压负载下的流致振动会影响往复泵的可靠性。为此,基于UDF(user define function,用户自定义函数)和Scheme脚本语言建立了能完整模拟吸入冲程和排出冲程的往复泵单缸仿真模型,并以流量和阀盘位移的理论曲线验证了仿真模型的正确性。同时,对不同的弹簧预紧力、弹簧刚度、限位器高度、曲柄转速和排出压力下往复泵单缸所受的流体激振力、腔内压力及阀盘运动随时间的变化情况进行了研究。结果表明,往复泵液力端的流体激振力是由柱塞腔内压力超调量瞬间释放所导致的;流体激振力最值出现在吸入阀开启之后,而非排出阀开启之后;现有结构参数下液力端最大的压力超调量和流体激振力分别为6.75 MPa和15.3 kN。基于往复泵单缸仿真模型的分析方法可用于往复泵流体激振力、阀盘运动和工作性能的预测,能有效减少超高压往复泵的研发周期和试验成本。

关键词: 往复泵液力端流致振动激振力    
Abstract:

At present, the vibration research for reciprocating pumps mainly focuses on the crankshaft and the crank connecting rod mechanism at the power end, with a lack of research on fluid-induced vibration at the hydraulic end. However, the fluid-induced vibration under ultra-high pressure load will affect the reliability of reciprocating pumps. Therefore, based on UDF (user define function) and Scheme scripting language, a reciprocating pump single-cylinder simulation model that could completely simulate the suction and discharge strokes was established, and the correctness of the simulation model was verified by the theoretical curves of flow and valve disc displacement. At the same time, the changes in fluid excitation force, chamber pressure and valve disc movement over time for a single cylinder of the reciprocating pump under different spring preload force, spring stiffness, limiter height, crank speed and discharge pressure were studied. The results showed that the fluid excitation force at the hydraulic end of reciprocating pump was caused by the instantaneous release of pressure overshoot in the plunger chamber; the maximum fluid excitation force occurred after the suction valve was opened rather than after the discharge valve was opened, and the maximum pressure overshoot and fluid excitation force at the hydraulic end were 6.75 MPa and 15.3 kN, respectively. The analysis method based on reciprocating pump single-cylinder simulation model can predict the fluid excitation force, valve disc movement and working performance of reciprocating pumps, which can effectively reduce the development cycle and test cost of ultra-high pressure reciprocating pumps.

Key words: reciprocating pump    hydraulic end    flow-induced vibration    fluid excitation force
收稿日期: 2023-02-28 出版日期: 2024-01-02
CLC:  TE 943.2  
基金资助: 国家自然科学基金面上项目(52174210)
通讯作者: 李斌     E-mail: 1511740894@qq.com;153051469@qq.com
作者简介: 张文益(1997—),男,四川南充人,硕士生,从事振动与控制研究,E-mail: 1511740894@qq.com,https://orcid.org/0009-0005-2857-0667
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张文益
李斌
石昌帅

引用本文:

张文益,李斌,石昌帅. 超高压往复泵液力端的流体激振力研究[J]. 工程设计学报, 2023, 30(6): 779-788.

Wenyi ZHANG,Bin LI,Changshuai SHI. Research on fluid excitation force at the hydraulic end of ultra-high pressure reciprocating pump[J]. Chinese Journal of Engineering Design, 2023, 30(6): 779-788.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.03.121        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I6/779

图1  往复泵工作原理
图2  往复泵液力端与锥形阀结构示意
图3  往复泵单缸三维网格模型
边界参数量值
入口压力0.1 MPa
出口压力140 MPa
壁面无滑移
介质
介质的密度比值0.999 9~1.069 9
弹簧预紧力1 000 N
弹簧刚度20 kN/m
限位器高度13.5 mm
表1  往复泵单缸仿真模型的边界条件
图4  往复泵单缸流量曲线
图5  往复泵各缸排出流量理论曲线
图6  往复泵各缸排出流量仿真曲线
图7  阀盘位移的理论和仿真曲线
图8  柱塞腔内压力变化曲线
图9  流体激振力变化曲线
图10  吸入阀开启过程中柱塞腔内压力云图
图11  不同弹簧预紧力下压力超调量和流体激振力的变化曲线
图12  不同弹簧预紧力下吸入阀阀盘的位移曲线
图13  不同弹簧预紧力下排出阀阀盘的位移曲线
图14  不同弹簧刚度下压力超调量和流体激振力的变化曲线
图15  不同曲柄转速下压力超调量和流体激振力的变化曲线
图16  不同曲柄转速下吸入阀阀盘的位移曲线
图17  不同曲柄转速下排出阀阀盘的位移曲线
图18  不同限位器高度下压力超调量和流体激振力的变化曲线
图19  不同限位器高度下吸入阀阀盘的位移曲线
图20  不同限位器高度下排出阀阀盘的位移曲线
图21  不同排出压力下压力超调量与流体激振力的变化曲线
图22  不同排出压力下吸入阀阀盘的位移曲线
图23  不同排出压力下排出阀阀盘的位移曲线
1 JOSIFOVIC A, ROBERTS J J, CORNEY J, et al. Reducing the environmental impact of hydraulic fracturing through design optimization of positive displacement pumps[J]. Energy, 2016, 115: 1216-1233.
2 徐长航,刘吉飞,陈国明,等.经验模态分解和魏格纳-维利分布在往复泵泵阀振动信号特征提取中的应用[J].中国石油大学学报(自然科学版),2010,34(3):99-103.
XU C H, LIU J F, CHEN G M, et al. Application of EMD and WVD to feature extraction from vibration signal of reciprocating pump valves[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(3): 99-103.
3 万邦烈,李继志.石油矿场水力机械[M].北京:石油工业出版社,1990:22-40.
WAN B L, LI J Z. Hydraulic machinery in petroleum fields[M]. Beijing: Petroleum Industry Press, 1990: 22-40.
4 PEI J F, HE C, LÜ M R, et al. The valve motion characteristics of a reciprocating pump[J]. Mechanical Systems and Signal Processing, 2016, 66-67: 657-664.
5 孟英峰,梁红,张仲良.往复泵泵阀运动规律的建模与仿真[J].石油机械,1995,23(5):16-20.
MENG Y F, LIANG H, ZHANG Z L. Mathematic model and simulation program for valve motion on reciprocating pumps[J]. China Petroleum Machinery, 1995, 23(5): 16-20.
6 董世民,王春华,阎乐好.往复泵自动锥形阀运动规律的新模型与仿真[J].流体机械,2001,29(6):19-22. doi:10.3969/j.issn.1005-0329.2001.06.005
DONG S M, WANG C H, YAN L H. A new model and simulation of the movement of self-acting conical valve of reciprocating pumps[J]. Fluid Machinery, 2001, 29(6): 19-22.
doi: 10.3969/j.issn.1005-0329.2001.06.005
7 戴相富,周和平,庞东晓,等.自动锥形阀运动规律数学模型及仿真[J].石油机械,2003,31(8):6-8. doi:10.3969/j.issn.1001-4578.2003.08.003
DAI X F, ZHOU H P, PANG D X, et al. Mathematic model and computerized simulation of motion law of automatic conical valve[J]. China Petroleum Machinery, 2003, 31(8): 6-8.
doi: 10.3969/j.issn.1001-4578.2003.08.003
8 朱葛,董世民,张卫卫,等.变刚度弹簧往复泵锥阀及其动态特性仿真[J].中国机械工程,2018,29(24):2912-2916. doi:10.3969/j.issn.1004-132X.2018.24.003
ZHU G, DONG S M, ZHANG W W, et al. Variable stiffness spring reciprocating pump poppet valves and their dynamic characteristic simulation[J]. China Mechanical Engineering, 2018, 29(24): 2912-2916.
doi: 10.3969/j.issn.1004-132X.2018.24.003
9 董世民,朱葛.基于数值仿真的泵阀变刚度弹簧设计与优化[J].农业工程学报,2018,34(15):50-57. doi:10.11975/j.issn.1002-6819.2018.15.007
DONG S M, ZHU G. Design and optimization of variable stiffness spring for pump valve based on numerical simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 50-57.
doi: 10.11975/j.issn.1002-6819.2018.15.007
10 王斐.柱塞泵液力端工作性能参数实时监控系统设计与试验研究[D].成都:西南石油大学,2016:66-71.
WANG F. Design and experimental research of real-time monitoring system for working performance parameters of hydraulic end of plunger pump[D]. Chengdu: Southwest Petroleum University, 2016: 66-71.
11 WOO J, SOHN D K, KO H S. Analysis of stiffness effect on valve behavior of a reciprocating pump operated by piezoelectric elements[J]. Micromachines, 2020, 11(10): 894.
12 WANG G R, ZHONG L, HE X, et al. Dynamic behavior of reciprocating plunger pump discharge valve based on fluid structure interaction and experimental analysis[J]. PLoS ONE, 2015, 10(10): e0140396.
13 KNUTSON A L, VAN DE VEN J D. Modelling and experimental validation of the displacement of a check valve in a hydraulic piston pump[J]. International Journal of Fluid Power, 2016, 17(2): 114-124.
14 IANNETTI A, STICKLAND M T, DEMPSTER W M. A CFD and experimental study on cavitation in positive displacement pumps: benefits and drawbacks of the ‘full’ cavitation model[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 57-71.
15 QIAN J Y, WEI L, JIN Z J, et al. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve[J]. Energy Conversion and Management, 2014, 87: 220-226.
16 何晓晖,栾健,王强.基于CFD的液压锥阀开启过程流固耦合分析[J].液压与气动,2015(9):122-125. doi:10.11832/j.issn.1000-4858.2015.09.030
HE X H, LUAN J, WANG Q. Fluid-solid coupling analysis based on CFD for hydraulic poppet valve opening process[J]. Chinese Hydraulics & Pneumatics, 2015(9): 122-125.
doi: 10.11832/j.issn.1000-4858.2015.09.030
17 张慢来,廖锐全,冯进.往复泵吸入特性的流体力学数值模拟[J].农业工程学报,2010,26():242-247.
ZHANG M L, LIAO R Q, FENG J. Hydrokinetic numerical simulation for sucking performance of reciprocating pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(Supp. 2): 242-247.
18 CHO I S, JUNG J Y. A study on the pressure ripple characteristics in a bent-axis type oil hydraulic piston pump[J]. Journal of Mechanical Science and Technology, 2013, 27(12): 3713-3719.
19 CHOI Y S, LEE J H, JEONG W B, et al. Dynamic behavior of valve system in linear compressor based on fluid-structure interaction[J]. Journal of Mechanical Science and Technology, 2010, 24(7): 1371-1377.
20 HUANG J H, YAN Z, QUAN L, et al. Characteristics of delivery pressure in the axial piston pump with combination of variable displacement and variable speed[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems & Control Engineering, 2015, 229(7): 599-613.
21 LEE J K, JUNG J K, CHAI J B . et al. Mathematical modeling of reciprocating pump[J]. Journal of Mechanical Science and Technology, 2015, 29(8): 3141-3151.
22 董怀荣,王平,张慧峰,等.恒流量往复泵压力变化规律实验研究[J].石油学报,2004,25(6):101-104. doi:10.7623/syxb200406021
DONG H R, WANG P, ZHANG H F, et al. Experimental research on the pressure variation of the constant-rate reciprocating pump[J]. Acta Petrolei Sinica, 2004, 25(6): 101-104.
doi: 10.7623/syxb200406021
23 张洋.基于泵缸压力测试的往复泵性能监测和故障诊断方法研究[D].成都:西南石油大学,2016:19-39.
ZHANG Y. Research on performance monitoring and fault diagnosis method of reciprocating pump based on pump cylinder pressure test[D]. Chengdu: Southwest Petroleum University, 2016: 19-39.
24 王国荣,王腾,李蓉,等.页岩气超高压往复泵工作腔压力测试与分析[J].西南石油大学学报(自然科学版),2019,41(6):174-180.
WANG G R, WANG T, LI R, et al. Analysis of pressure characteristics in working cavity of ultra high pressure reciprocating pump for shale gas[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6): 174-180.
25 朱坚铭.车载压裂泵多体系统动态仿真与隔振优化[D].秦皇岛:燕山大学,2020:22-24.
ZHU J M. Dynamic simulation and vibration isolation optimization of multibody system for vehicle fracturing pump[D]. Qinhuangdao: Yanshan University, 2020: 22-24.
[1] 魏琦, 况雨春. 曲柄连杆比对往复泵排量不均度及活塞惯性力的影响分析[J]. 工程设计学报, 2021, 28(2): 190-194.
[2] 姜晓飞, 张冠伟, 胡永秀, 张大卫. 数控机床整机动态特性评价方法[J]. 工程设计学报, 2020, 27(2): 135-145.