Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 297-305    DOI: 10.3785/j.issn.1006-754X.2023.00.039
机械设计理论与方法     
多极圆盘式磁流变制动器的设计与优化
黄浩(),吴杰(),邓兵兵,谢红阳
西华大学 机械工程学院,四川 成都 610000
Design and optimization of multipole disc-type magnetorheological brake
Hao HUANG(),Jie WU(),Bingbing DENG,Hongyang XIE
School of Mechanical Engineering, Xihua University, Chengdu 610000, China
 全文: PDF(3573 KB)   HTML
摘要:

针对传统圆盘式磁流变制动器中工作间隙磁场强度沿制动盘径向分布不均匀、远离线圈区域的工作间隙磁场强度较小的问题,提出并设计了一种多极圆盘式磁流变制动器。首先,阐述了多极圆盘式磁流变制动器的基本结构及工作原理,完成了磁流变制动器的磁路建模,并建立了其制动转矩的数学模型。然后,基于有限元仿真软件,开展了多极圆盘式磁流变制动器的磁场仿真分析。最后,以转矩密度为优化目标,采用梯度自由优化算法中的BOBYQA(bound optimization by quadratic approximation,二次逼近边界优化)算法,完成了多极圆盘式磁流变制动器的结构优化设计。结果表明,所设计的磁流变制动器的外间隙磁感应强度为0.681~0.760 T;内间隙0~<5 mm处的磁感应强度为0.114~0.349 T,5~65 mm处的磁感应强度为0.362~0.498 T;内、外线圈产生的2种磁场可以在磁流变液间隙中实现叠加,从而提高制动转矩。相较于优化前,当所有内、外线圈的电流为1 A时,优化后磁流变制动器的制动转矩增大了15.2%,转矩密度增大了14.3%。多极圆盘式磁流变制动器可为高转矩密度磁流变传动技术的发展提供参考。

关键词: 磁流变制动器多极圆盘式制动转矩转矩密度    
Abstract:

Aiming at the problem that the working gap magnetic field intensity distributes unevenly along the radial direction of the brake disc and the working gap magnetic field intensity far from the coil area is small, a multipole disc-type magnetorheological (MR) brake is proposed and designed. Firstly, the basic structure and working principle of the multipole disc-type MR brake were elaborated and the magnetic circuit modeling of the MR brake was completed, and then a mathematical model of its braking torque was established. Then, based on finite element simulation software, the magnetic field simulation analysis for the multipole disc-type MR brake was carried out. Finally, taking the torque density as an optimization objective, the structural optimization design of the multipole disc-type MR brake was completed by BOBYQA (bound optimization by quadratic approximation) algorithm within the gradient free optimization algorithm. The results showed that the external gap magnetic induction intensity of the designed MR brake was 0.681?0.760 T; the magnetic induction intensity at the internal gap of 0?<5 mm was 0.114?0.349 T, and the magnetic induction intensity at the internal gap of 5?65 mm was 0.362?0.498 T; the two magnetic fields generated by the inner and outer coils could be superimposed in the MR fluid gap, which improved the braking torque. Compared to before optimization, when the current of all inner and outer coils was 1 A, the braking torque increased by 15.2% and the torque density increased by 14.3% of the optimized MR brake. The multipole disc-type MR brake can provide a reference for the development of high torque density MR transmission technology.

Key words: magnetorheological (MR) brake    multipole    disc-type    braking torque    torque density
收稿日期: 2022-10-24 出版日期: 2023-07-06
CLC:  TH 132  
基金资助: 国家自然科学基金资助项目(51805444);西华大学青年学者后备人才支持计划资助项目(DC1900007176);西华大学人才引进项目(Z201017)
通讯作者: 吴杰     E-mail: hh18990363654@163.com;jiewu323@163.com
作者简介: 黄 浩(1998—),男,四川眉山人,硕士生,从事磁流变制动器设计研究,E-mail: hh18990363654@163.com, https://orcid.org/0000-0001-8788-3982
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄浩
吴杰
邓兵兵
谢红阳

引用本文:

黄浩,吴杰,邓兵兵,谢红阳. 多极圆盘式磁流变制动器的设计与优化[J]. 工程设计学报, 2023, 30(3): 297-305.

Hao HUANG,Jie WU,Bingbing DENG,Hongyang XIE. Design and optimization of multipole disc-type magnetorheological brake[J]. Chinese Journal of Engineering Design, 2023, 30(3): 297-305.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.039        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/297

图1  多极圆盘式磁流变制动器的线圈布置简图
图2  多极圆盘式磁流变制动器结构示意1—传动轴; 2—平键; 3—上端盖; 4—深沟球轴承; 5—上壳体; 6—上制动盘; 7—上导磁盘; 8—上线圈盘; 9—外线圈架; 10—中间壳体; 11—外线圈; 12—内线圈; 13—内线圈架; 14—下线圈盘; 15—下制动盘; 16—磁极; 17—下导磁盘; 18—下壳体; 19—下端盖。
图3  多极圆盘式磁流变制动器磁路简图
图4  多极圆盘式磁流变制动器等效磁路
图5  制动盘轴向示意图
图6  多极圆盘式磁流变制动器的主要结构参数
结构参数优化范围
上限下限
上、下制动盘厚度t1128
上、下壳体厚度t41812
中间壳体厚度t62517
磁极圆心所在中心圆半径r66560
磁极半径r121915
表1  多极圆盘式磁流变制动器主要结构参数的优化范围 (mm)
图7  多极圆盘式磁流变制动器主要结构参数的优化迭代过程
图8  多极圆盘式磁流变制动器转矩密度的优化迭代过程
结构参数优化前优化后
上、下制动盘厚度t1108
上、下壳体厚度t41212
中间壳体厚度t61217
磁极圆心所在中心圆半径r66165
磁极半径r121819
表2  多极圆盘式磁流变制动器主要结构参数的优化结果 (mm)
优化前后制动转矩/(N?mm)

转矩密度/

(N/mm2)

上制动盘下制动盘
性能提升率/%15.315.114.3
优化前169 340168 25023 815
优化后195 220193 60027 222
表3  优化前后多极圆盘式磁流变制动器的制动性能对比
图9  多极圆盘式磁流变制动器仿真模型
图10  MRF-305型磁流变液的B—H曲线
图11  多极圆盘式磁流变制动器各间隙处的磁场分布
图12  多极圆盘式磁流变制动器各间隙处的磁感应强度变化曲线
性能参数线圈通电方式
方式1)方式2)方式3)方式4)
上制动盘制动转矩/(N?mm)171 050103 60020 407195 220
下制动盘制动转矩/(N?mm)169 070102 92020 274193 600
转矩密度/(N/mm2)23 85214 4482 845.727 222
表4  不同通电方式下多极圆盘式磁流变制动器的制动性能对比
性能参数磁极数量/个
642
上制动盘制动转矩/(N?mm)195 220121 95048 311
下制动盘制动转矩/(N?mm)193 600121 14047 997
转矩密度/(N/mm2)27 22217 0056 736.8
表5  不同磁极数量下多极圆盘式磁流变制动器的制动性能对比
1 胡国良,钟芳,张海云,等.两级径向流蜿蜒式磁流变阀结构设计与动态性能分析[J].农业机械学报,2016,47(10): 376-382,389. doi:10.6041/j.issn.1000-1298.2016.10.049
HU G L, ZHONG F, ZHANG H Y, et al. Structure design and dynamic performance analysis of two-stage radial type magnetorheological valve with meandering fluid flow paths[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 376-382, 389.
doi: 10.6041/j.issn.1000-1298.2016.10.049
2 HU G L, WU L F, LI L S. Torque characteristics analysis of a magnetorheological brake with double brake disc[J]. Actuators, 2021,10(2): 23. doi:10.3390/act10020023
doi: 10.3390/act10020023
3 THAKUR M K, SARKAR C. Experimental and numerical study of magnetorheological clutch with sealing at larger radius disc[J]. Defence Science Journal, 2020, 70(6): 575-582.
4 SUN H, FANG C N, ZHANG L, et al. Design and research of a novel magnetorheological fluid coupling with cycloid corrugated surface[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 60(3): 355-377.
5 ZHANG J R, ZHU Y Y, TU J W, et al. Development and vibration control of frequency adjustable tuned mass damper based on magnetorheological elastomer[J]. Materials, 2022, 15(5): 1829. doi:10.3390/ma15051829
doi: 10.3390/ma15051829
6 KORDONSKI W, GOLINI D. Multiple application of magnetorheological effect in high precision finishing[J]. Journal of Intelligent Material Systems and Structures, 2002, 13(7/8): 401-404. doi:10.1106/104538902026104
doi: 10.1106/104538902026104
7 STRECKER Z, JENIŠ F, KUBÍK M, et al. Novel approaches to the design of an ultra-fast magnetor-heological valve for semi-active control[J]. Materials, 2021, 14(10): 2500. doi:10.3390/ma14102500
doi: 10.3390/ma14102500
8 胡国良,李林森.多液流通道旋转式磁流变制动器结构设计及优化[J].现代制造工程,2019(12):145-153. doi:10.16731/j.cnki.1671-3133.2019.12.023
HU G L, LI L S. Structure design and optimization of rotary magnetorheological brake with multi-fluid flow channels[J]. Modern Manufacturing Engineering, 2019(12): 145-153.
doi: 10.16731/j.cnki.1671-3133.2019.12.023
9 张玉鲁,李兆松,梁彬.圆盘式磁流变液制动器的设计与磁场仿真[J].汽车工程学报,2018,8(1):54-60. doi:10.3969/j.issn.2095-1469.2018.01.09
ZHANG Y L, LI Z S, LIANG B. Design and magnetic field simulation of disc type MRF brake[J]. Chinese Journal of Automotive Engineering, 2018, 8(1): 54-60.
doi: 10.3969/j.issn.2095-1469.2018.01.09
10 IQBAL H, YI B. Design of a new bilayer multipole electromagnetic brake system for a haptic interface[J]. Applied Sciences, 2019, 9(24): 5394. doi:10.3390/app9245394
doi: 10.3390/app9245394
11 吴杰,蒋学争,姚进,等.新型双层多线圈磁流变制动器研究[J].工程科学与技术,2016,48(5):201-209. doi:10.15961/j.jsuese.2016.05.028
WU J, JIANG X Z, YAO J, et al. Research on a novel double-layer multi-coil magnetorheological brake[J]. Advanced Engineering Sciences, 2016, 48(5): 201-209.
doi: 10.15961/j.jsuese.2016.05.028
12 吴彦达,胡姗姗,殷煜翔,等.基于COMSOL的磁流变液盘式制动器仿真优化与研究[J].大学物理实验,2019,32(6):26-31. doi:10.14139/j.cnki.cn22-1228.2019.06.007
WU Y D, HU S S, YIN Y X, et al. Simulation optimization and research of magnetorheological fluid disc brake based on COMSOL[J]. Physical Experiment of College, 2019, 32(6): 26-31.
doi: 10.14139/j.cnki.cn22-1228.2019.06.007
13 吴礼繁,胡国良,易锋,等.内置永磁体的盘式磁流变制动器结构优化设计及仿真分析[J].现代制造工程,2021(8):138-146. doi:10.16731/j.cnki.1671-3133.2021.08.021
WU L F, HU G L, YI F, et al. Structure optimal design and simulation analysis of disc-type magnetorheological brake with inner permanent magnet[J]. Modern Manufacturing Engineering, 2021(8): 138-146.
doi: 10.16731/j.cnki.1671-3133.2021.08.021
14 李志华,喻军,曾宁,等.圆盘式磁流变制动器仿真优化设计[J].农业机械学报,2015,46(10):364-369. doi:10.6041/j.issn.1000-1298.2015.10.049
LI Z H, YU J, ZENG N, et al. Simulation and optimization design of disc-type magnetorheological brake[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 364-369.
doi: 10.6041/j.issn.1000-1298.2015.10.049
15 WU J, HU H, LI Q T, et al. Simulation and experimental investigation of a multi-pole multi-layer magnetorheological brake with superimposed magnetic fields[J]. Mechatronics, 2020, 65: 102314. doi:10.1016/j.mechatronics.2019.102314
doi: 10.1016/j.mechatronics.2019.102314
16 UBAIDILLAH, PERMATA A N S, MAZLAN S A, et al. Three-dimensional finite element magnetic simulation of an innovative multi-coiled magnetorheological brake[J]. IOP Conference Series: Materials Science and Engineering, 2017, 257: 012052. doi:10.1088/1757-899X/257/1/012052
doi: 10.1088/1757-899X/257/1/012052
17 POZNIĆ A, STOJIĆ B. A contribution to the analysis of magnetorheological brake[J]. IOP Conference Series: Materials Science and Engineering, 2018, 393: 012012. doi:10.1088/1757-899X/393/1/012012
doi: 10.1088/1757-899X/393/1/012012
18 NAM T H, AHN K K. New approach to designing an MR brake using a small steel roller and MR fluid[J]. Journal of Mechanical Science and Technology, 2009, 23(7): 1911-1923.
19 IMADUDDIN F, MAZLAN S A, ZAMZURI H, et al. Bypass rotary magnetorheological damper for automotive applications[J]. Applied Mechanics and Materials, 2014, 663: 685-689.
[1] 邬思敏, 孟文俊, 李淑君, 王尧, 徐成功. 双线圈旁置式新型磁流变制动器的设计与优化[J]. 工程设计学报, 2016, 23(5): 453-460.
[2] 李志华, 林 阳, 朱丰友, 郭林超. 圆筒式磁流变制动器结构与磁路耦合的优化设计[J]. 工程设计学报, 2009, 16(4): 261-265.