Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 315-324    DOI: 10.3785/j.issn.1006-754X.2023.00.032
机械设计理论与方法     
激光-PDC钻头联合破岩机理及特性研究
黄志强(),梁耀文,陈科,翟预立,雷雨薇
西南石油大学 机电工程学院,四川 成都 610500
Research on the mechanism and characteristic of joint rock-breaking of laser-PDC drill bit
Zhiqiang HUANG(),Yaowen LIANG,Ke CHEN,Yuli ZHAI,Yuwei LEI
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(7291 KB)   HTML
摘要:

随着我国油气勘探逐步向深层、超深层和复杂难钻岩层转移,现有的机械钻头存在着破岩效率低及作业成本高等问题。因此,提出了一种新型激光-PDC钻头,以实现高效破岩和节能降耗。采用有限元方法,基于岩石HJC(Holmquist-Johnson-Cook)本构模型,建立了激光-PDC(polycrystalline diamond compact,聚晶金刚石复合片)钻头联合破岩非线性动力学模型,开展了激光-PDC钻头联合破岩仿真研究。仿真结果表明:激光的辐射作用使岩石表面受辐射区域产生了较高的温度和较大的预应力,进而在岩石表面形成了相互贯穿的损伤带,降低了岩石强度,更有利于切削齿破碎岩石;与无激光单PDC钻头相比,激光-PDC钻头在破岩过程中受到的反扭矩降低了24.8%,钻头轴向加速度波动幅度降低了10.5%,钻进位移增加了8.67 mm,钻进速度提升了112.79%。搭建了激光-机械联合破岩实验台架,进行了激光-PDC钻头联合破岩实验。实验结果表明,激光-PDC钻头联合破岩有着更好的钻进稳定性和连续性,大大提高了破岩效率。研究结果为激光-机械破岩技术的发展和应用提供了一定的理论支撑和技术支持。

关键词: 激光-PDC(polycrystalline diamond compact,聚晶金刚石复合片)钻头联合破岩激光辐射破岩特性    
Abstract:

With the gradual shift of oil and gas exploration to deep, ultra-deep and complex rock formations, the existing mechanical drill bits have the problems of low rock breaking efficiency and high operating cost. Therefore, a new type of laser-PDC (polycrystalline diamond compact) drill bit was proposed to achieve efficient rock-breaking and energy-saving and cost-reducing. Using finite element method and based on the HJC (Holmquist-Johnson-Cook) constitutive model of rock, a nonlinear dynamic model of laser-PDC drill bit joint rock-breaking was established, and simulation research on laser-PDC drill bit joint rock-breaking was conducted. The simulation results showed that the radiation effect of laser generated higher temperature and greater prestress in the radiated area of rock surface, which in turn formed interpenetrating damage zones on the rock surface, reduced the strength of the rock, and was more conducive to cutting teeth to break the rock; compared with non-laser single PDC drill bit, laser-PDC drill bit experienced a 24.8% reduction in anti-torque during rock breaking, a 10.5% reduction in axial acceleration fluctuation, an increase in drilling displacement of 8.67 mm, and an increase in drilling speed of 112.79%. A laser-mechanical joint rock-breaking experimental bench was built to conduct laser-PDC drill bit joint rock-breaking experiment. The experimental results showed that laser-PDC drill bit joint rock-breaking had better drilling stability and continuity, greatly improving the rock-breaking efficiency. The research results can provide theoretical and technical support for the development and application of laser-mechanical rock-breaking technology.

Key words: laser-PDC (polycrystalline diamond compact) drill bit    joint rock-breaking    laser radiation    rock-breaking characteristic
收稿日期: 2022-08-15 出版日期: 2023-07-06
CLC:  TE 242.9  
基金资助: 国家自然科学基金面上项目(51974272);四川省科技计划项目(2021JDRC0119);四川省科技创新苗子工程项目(2022035)
作者简介: 黄志强(1968—),男,四川眉山人,教授,博士,从事石油天然气装备研究,E-mail: huangzq@swpu.edu.cn, https://orcid.org/0000-0001-7809-3241
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄志强
梁耀文
陈科
翟预立
雷雨薇

引用本文:

黄志强,梁耀文,陈科,翟预立,雷雨薇. 激光-PDC钻头联合破岩机理及特性研究[J]. 工程设计学报, 2023, 30(3): 315-324.

Zhiqiang HUANG,Yaowen LIANG,Ke CHEN,Yuli ZHAI,Yuwei LEI. Research on the mechanism and characteristic of joint rock-breaking of laser-PDC drill bit[J]. Chinese Journal of Engineering Design, 2023, 30(3): 315-324.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.032        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/315

图1  激光-PDC钻头的结构
图2  椭圆形光束辐射示意图
图3  激光-PDC钻头激光通道示意图
图4  激光-PDC钻头联合破岩有限元模型
图5  激光布置方式及激光与切削齿的耦合关系示意
图6  椭圆形激光光束的能量分布
图7  HJC强度模型
图8  HJC损伤模型
参数量值
密度2 680 kg·m-3
比热容653.2 J·kg-1·K-1
导热系数3.49 W·m-1·K-1
弹性模量38.38 GPa
热膨胀系数8×10-6 K-1
抗压强度124.53 MPa
抗拉强度12 MPa
表1  花岗岩热物理性能及力学性能参数
参数量值
fc124.53 MPa
T12 MPa
A0.15
B2.5
N0.79
C0.001 86
Smax5.4
D10.045
D21
Ef min0.015
表2  花岗岩HJC本构模型参数
图9  激光-PDC钻头钻进过程中岩石表面温度云图
图10  钻头钻进过程中岩石表面应力云图
图11  钻头钻进过程中岩石表面损伤云图
图12  岩石对钻头的反扭矩曲线
图13  钻头轴向加速度曲线
图14  钻头钻进位移曲线
图15  钻头钻进速度曲线
图16  激光-机械联合破岩实验台架
技术参数量值
激光功率0~20 kW
钻压0~50 kN
输出转速0~120 r/min
钻进行程0~1 800 mm
表3  激光-机械联合破岩实验台架的主要技术参数
图17  激光-机械联合破岩实验设备的安装及调试
图18  激光-PDC钻头联合破岩实验过程
图19  激光-PDC钻头联合破岩后井底形貌
图20  激光-PDC钻头钻进速度实验值与仿真值的对比
1 樊大磊,王宗礼,李文博,等. 2021年国内外油气资源形势分析及展望[J].中国矿业,2022,31(1):26-31. doi:10.12075/j.issn.1004-4051.2022.01.027
FAN D L, WANG Z L, LI W B, et al. Analysis and prospects of oil and gas resource situation at home and abroad in 2021[J]. China Mining Magazine, 2022, 31(1): 26-31.
doi: 10.12075/j.issn.1004-4051.2022.01.027
2 牟海维,辛朋辉,罗伟.激光破岩技术发展现状及未来发展方向[J].石油化工应用,2016,35(8):1-5,9. doi:10.3969/j.issn.1673-5285.2016.08.001
MOU H W, XIN P H, LUO W. Development status and future development of laser breaking technology[J]. Petrochemical Industry Application, 2016, 35(8): 1-5, 9.
doi: 10.3969/j.issn.1673-5285.2016.08.001
3 赵保文.新型钻井技术发展研究[J].中国石油和化工标准与质量,2013,33(9):71. doi:10.3969/j.issn.1673-4076.2013.09.069
ZHAO B W. Research on development of new drilling technology[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(9): 71.
doi: 10.3969/j.issn.1673-4076.2013.09.069
4 MOAVENZADEH F, MAGARRY F J, WILLIAMSON R B. Use of laser and surface active agents for excavation in hard rocks[C]//The 43rd Annual Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, Texas, Sept. 29-Oct. 2, 1968.
5 XU Z, REED C B, KONERCKI G, et al. Specific energy for pulsed laser rock drilling[J]. Journal of Laser Applications, 2003, 15(1): 25-30.
6 BAZARGAN M, JALALYFAR H, KOOHIAN A, et al. Feasibility of using laser bit beside of common bits to drilling slim holes[C]//International Petroleum Technology Conference, Beijing, China, Mar. 26, 2013.
7 BATARSEH S I, HAZIM H H, AL-MULHEM A A, et al. High power laser application in openhole multiple fracturing with an overview of laser research: Past, present and future[C]//SPE Saudi Arabia Section Technical Symposium and Exhibition [2022-08-07]. .
8 BATARSEH S I, GRAVES R, DAMIAN P. Laser perforation: Lab to the field[C]//Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, UAE, Jan. 1, 2017.
9 DAMIAN P S, BATARSEH S I, HAN Y. Numerical modeling of thermal and mechanical effects in laser-rock interaction: An overview[C]//50th U. S. Rock Mechanics/Geomechanics Symposium, Houston, Texas, Jun. 26-29, 2016.
10 易先中,高德利,明燕,等.激光破岩的物理模型与传热学特性研究[J].天然气工业,2005(8):62-65,9. doi:10.3321/j.issn:1000-0976.2005.08.020
YI X Z, GAO D L, MING Y, et al. Physical model of removing rock by laser and its heat transfer characteristics[J]. Natural Gas Industry, 2005(8): 62-65, 9.
doi: 10.3321/j.issn:1000-0976.2005.08.020
11 易先中,祁海鹰,余万军,等.高能激光破岩的传热学特性研究[J].光学与光电技术,2005(1):11-13. doi:10.3969/j.issn.1672-3392.2005.01.004
YI X Z, QI H Y, YU W J, et al. Research on heat transfer characteristics of the removal rock by laser[J]. Optics & Optoelectronic Technology, 2005(1): 11-13.
doi: 10.3969/j.issn.1672-3392.2005.01.004
12 易先中,祁海鹰,易先彬,等.激光破岩温度场的数学模型[J].石油天然气学报(江汉石油学院学报),2005():885-887.
YI X Z, QI H Y, YI X B, et al. Mathematical model of temperature field of laser rock breaking[J]. Journal of Oil and Gas Technology, 2005 (): 885-887.
13 李密,王岩楼,王亚丽,等.激光破岩的理论分析与数值模拟[J].中国激光,2008(8):1245-1249. doi:10.3321/j.issn:0258-7025.2008.08.024
LI M, WANG Y L, WANG Y L, et al. Theoretical analysis and numerical simulation of laser to rock[J]. Chinese Journal of Lasers, 2008(8): 1245-1249.
doi: 10.3321/j.issn:0258-7025.2008.08.024
14 苏芮,刘刚.激光破岩机理及其影响因素分析[J].西部探矿工程,2013,25(9):1-6. doi:10.3969/j.issn.1004-5716.2013.09.001
SU R, LIU G. Mechanism and influencing factors of laser rock fragmenting[J]. West-China Exploration Engineering, 2013, 25(9): 1-6.
doi: 10.3969/j.issn.1004-5716.2013.09.001
15 李美艳,韩彬,张世一,等.岩石表面激光射孔实验研究[J].激光杂志,2015,36(7):44-47.
LI M Y, HAN B, ZHANG S Y, et al. Experimental study of laser perforation on the surface of sandstone[J]. Laser Journal, 2015, 36(7): 44-47.
16 LI M Y, HAN B, ZHANG Q, et al. Investigation on rock breaking for sandstone with high power density laser beam[J]. Optik, 2019, 180: 635-647.
17 LI M Y, HAN B, ZHANG S Y, et al. Numerical simulation and experimental investigation on fracture mechanism of granite by laser irradiation[J]. Optics & Laser Technology, 2018, 106: 52-60.
18 邓嵘,张文汀,康民强,等.移动线形激光破岩耦合场仿真分析及实验研究[J].激光与红外,2019,49(5):535-542. doi:10.3969/j.issn.1001-5078.2019.05.004
DENG R, ZHANG W T, KANG M Q, et al. Simulation analysis and experimental research on coupling field of mobile linear laser rock breaking[J]. Laser & Infrared, 2019, 49(5): 535-542.
doi: 10.3969/j.issn.1001-5078.2019.05.004
19 张世一,韩彬,李美艳,等.激光钻井技术研究进展与展望[J].石油机械,2016,44(7):7-11.
ZHANG S Y, HAN B, LI M Y, et al. Research progress and prospect on laser drilling technology[J]. China Petroleum Machinery, 2016, 44(7): 7-11.
20 MCDONALD J C. Evaluation of possible solutions to reduce ground source heat exchanger cost[D]. Knoxville: University of Tennessee, 2018.
21 MOXLEY J F, LAND M S, RINZLER C C, et al. Method and system for advancement of a borehole using a high power laser: EP20090840554[P]. 2019-02-06
22 JAMALI S. Principle investigation of laser jet drilling process and its rock interaction[D]. Iran: Fakultat fur Maschinenbau der Ruhr-Universitat Bochum, 2018.
23 WITTIG V. New developments for hard rock drilling from hydraulic DTH hammer to laser drilling[R]. Bochum, Germany:International Geothermal Centre, 2017.
24 MUTO S, KATO H, MASUDA K, et al. Development of a laser-based hybrid drill for concrete and rocks[C]//International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, Sofia, Bulgaria, 2010.
25 MUTO S, TEI K, YAMAGUCHI S, et al. Laser based hybrid technique for civil engineering[C]//International Symposium on Gas Flow and Chemical Lasers and High Power Lasers. Lisboa, Portuga, 2008.doi: 10.1117/12.816670
doi: 10.1117/12.816670
26 李琴,谢豆,黄志强,等.硬地层复合钻头破岩特性与提速机理研究[J].机械科学与技术,2017,36(3):7. doi:10.13433/j.cnki.1003-8728.2017.0304
LI Q, XIE D, HUANG Z Q, et al. Studying rock breaking properties and penetration rate improving mechanisms for hybrid drill bit in hard formation[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 347-353.
doi: 10.13433/j.cnki.1003-8728.2017.0304
No related articles found!