Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 136-143    DOI: 10.3785/j.issn.1006-754X.2023.00.026
设计基础理论与方法     
考虑平均应变的低周疲劳寿命本征损伤耗散预测方法
王嘉栋1(),胡明1(),严伟2,李浩然1()
1.浙江理工大学 机械工程学院,浙江 杭州 310018
2.浙江正远智能装备科技有限公司,浙江 湖州 313000
Prediction method of intrinsic damage dissipation for low cycle fatigue life considering average strain
Jiadong WANG1(),Ming HU1(),Wei YAN2,Haoran LI1()
1.College of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2.Zhejiang Zhengyuan Intelligent Equipment Technology Co. , Ltd. , Huzhou 313000, China
 全文: PDF(2595 KB)   HTML
摘要:

金属构件疲劳破坏是工业中常见的破坏形式。为了提高构件疲劳寿命的预测精度,针对低周疲劳载荷下平均应变对疲劳寿命的影响,基于连续介质损伤力学及其不可逆热力学框架,并引入Ramberg-Osgood循环本构模型,以等本征损伤耗散功作为等寿命条件,建立了一种考虑平均应变的低周疲劳寿命预测模型。为对比验证新建模型的有效性和先进性,采用新建模型、修正的Ohji模型、Sandor模型和Wei-Wong模型分别对叠加平均应变的45钢和2124-T851铝合金的低周疲劳寿命进行了预测,并与对应的试验结果进行对比。结果表明:新建模型的预测结果与试验结果吻合较好,其预测效果优于现有模型。基于本征损伤耗散理论的疲劳寿命预测方法为金属材料疲劳寿命的预测提供了新思路。

关键词: 低周疲劳损伤力学平均应变本征损伤耗散功寿命预测    
Abstract:

Fatigue failure of metal components is a common form of failure in industry. In order to improve the prediction accuracy of fatigue life of components, aiming at the influence of average strain on fatigue life under low cycle fatigue load, a low cycle fatigue life prediction model considering average strain was established based on the continuum damage mechanics and its irreversible thermodynamic framework, by introducing the Ramberg-Osgood cyclic constitutive model and using equivalent intrinsic damage dissipation work as an equal life condition. In order to compare and verify the effectiveness and progressiveness of the new model, the new model, modified Ohji model, Sandor model and Wei-Wong model were used to predict the low cycle fatigue life of 45 steel and 2124-T851 aluminum alloy with superimposed average strain, and compared with the corresponding test results. The results showed that the prediction results of the new model were in good agreement with the experimental results, and its prediction effect was better than the existing models. The fatigue life prediction method based on the intrinsic damage dissipation theory provides a new idea for the fatigue life prediction of metal materials.

Key words: low cycle fatigue    damage mechanics    average strain    intrinsic damage dissipation work    life prediction
收稿日期: 2022-09-05 出版日期: 2023-05-06
CLC:  O 346.2  
基金资助: 国家自然科学基金资助项目(51375458)
通讯作者: 李浩然     E-mail: jiadongwang1997@163.com;huming@zstu.edu.cn;lihaoranysu@163.com
作者简介: 王嘉栋(1997—),男,江苏无锡人,硕士生,从事构件疲劳寿命预测研究,E-mail: jiadongwang1997@163.com,https://orcid.org/0000-0002-0388-5794|胡 明(1976—),女,辽宁凌海人,教授,博士,从事空间折展机构可靠性研究,E-mail: huming@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王嘉栋
胡明
严伟
李浩然

引用本文:

王嘉栋,胡明,严伟,李浩然. 考虑平均应变的低周疲劳寿命本征损伤耗散预测方法[J]. 工程设计学报, 2023, 30(2): 136-143.

Jiadong WANG,Ming HU,Wei YAN,Haoran LI. Prediction method of intrinsic damage dissipation for low cycle fatigue life considering average strain[J]. Chinese Journal of Engineering Design, 2023, 30(2): 136-143.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.026        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/136

图1  原子键滑移机制示意
图2  电液伺服动静万能试验机
成分质量分数/%
C0.460
Si0.250
Mn0.590
P0.022
S0.003
Cr0.020
表1  45钢的化学成分
图3  45钢光滑试样几何尺寸
编号应变比r应变幅εa/%塑性应变幅εap/%疲劳寿命Nf/次
1-10.600.3943 417
2-10.800.5591 691
3-11.000.7531 026
4-11.200.932789
50.050.600.3903 405
60.050.800.5701 692
70.051.000.7451 307
80.051.200.937714
90.50.600.3863 111
100.50.800.5661 788
110.51.000.746942
120.51.200.919706
表2  45钢的低周疲劳试验数据
材料弹性模量E/GPa疲劳延性系数εf'循环应变硬化指数n'材料参数
αS1
2124-T851铝合金73.50.150.068 31.766 0-0.292 8
45钢198.40.430.243 00.251 21.481 5
表3  2种材料的疲劳性能参数
图4  2种材料的低周疲劳寿命预测结果误差分散图
材料平均误差指标Iˉ/%
修正的Ohji模型Sandor模型Wei-Wong模型新建模型
2124-T851铝合金60.885.278.453.1
45钢7.813.415.76.7
表4  4种低周疲劳寿命预测模型的平均误差指标
1 文超,王浩,高红梅,等.中碳钢疲劳寿命的估算方法研究[J].机械设计与制造,2019(8):73-75. doi:10.3969/j.issn.1001-3997.2019.08.019
WEN C, WANG H, GAO H M, et al. Investigations of medium carbon steel fatigue life predictions[J]. Machinery Design and Manufacture, 2019(8): 73-75.
doi: 10.3969/j.issn.1001-3997.2019.08.019
2 WEI W L, HAN L H, FENG Y R, et al. Low cycle fatigue behavior of N80Q steel under the influence of mean strains[J]. Materials Science Forum, 2019, 944: 1067-1075.
3 WEI W L, HAN L H, WANG H, et al. Low-cycle fatigue behavior and fracture mechanism of HS80H steel at different strain amplitudes and mean strains[J]. Journal of Materials Engineering and Performance, 2017, 26: 1717-1725.
4 ZHANG J H, LI W D, DAI H W, et al. Study on the elastic‒plastic correlation of low-cycle fatigue for variable asymmetric loadings[J]. Materials, 2020, 13(11): 2451.
5 苏运来,陆山.适用于任意应变比的应变寿命新模型[J].推进技术,2018,39(1):169-175. doi:10.13675/j.cnki.tjjs.2018.01.019
SU Y L, LU S. A new strain-life model accounting for effects of various strain ratios[J]. Journal of Propulsion Technology, 2018, 39(1): 169-175.
doi: 10.13675/j.cnki.tjjs.2018.01.019
6 刘俭辉,吕鑫,韦尧兵,等.考虑附加强化效应及平均应变的多轴疲劳寿命预估[J].中国机械工程,2020,31(3):314-320. doi:10.3969/j.issn.1004-132X.2020.03.009
LIU J H, LÜ X, WEI Y B, et al. Multiaxial fatigue life prediction considering additional hardening effects and mean stains[J]. China Mechanical Engineering, 2020, 31(3): 314-320.
doi: 10.3969/j.issn.1004-132X.2020.03.009
7 ITOH T, NAKAMURA H, TAKANASHI M, et al. Multiaxial low cycle fatigue life of Ti-6Al-4V under non-proportional loading with mean strain[J]. Theoretical and Applied Fracture Mechanics, 2017, 90: 165-173.
8 陈凌,张贤明,刘飞,等.镁合金非对称应力载荷下的低周疲劳损伤演化和寿命预测[J].中国机械工程,2019,30(6):748-755. doi:10.3969/j.issn.1004-132X.2019.06.018
CHEN L, ZHANG X M, LIU F, et al. Damage evolution and life prediction of low cycle fatigue for magnesium alloys under asymmetrical stress loading[J]. China Mechanical Engineering, 2019, 30(6): 748-755.
doi: 10.3969/j.issn.1004-132X.2019.06.018
9 SKIBICKI D, LIGAJ B. Application of continuum damage mechanics model in terms of fatigue life assessment for low cycle and quasi static loadings[J]. Materialwissenschaft und Werkstofftechnik,2018, 49(8): 1026-1039.
10 郝红.2124-T851铝合金平均应力松弛行为与随机疲劳寿命估算研究[D].杭州:浙江大学,2018:35-38.
HAO H. A study on the mean stress relaxation and fatigue life estimation under random load of 2124-T851 aluminum alloy[D]. Hangzhou: Zhejiang University, 2018: 35-38.
11 SANDOR B I. Fundamentals of cyclic stress and strain[M]. Madison, WI: University of Wisconsin Press, 1972: 43-46.
12 WEI X F, WONG S C, BANDARU S. A semi-empirical unified model of strain fatigue life for insulation plastics[J]. Journal of Materials Science, 2010, 45(2): 326-333.
13 COFFIN L F JR. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers, 1954, 76(6): 931-949.
14 OHJI K, MILLER W R, MARIN J. Cumulative damage and effect of mean strain in low-cycle fatigue of a 2024-T351 aluminum alloy[J]. Journal of Basic Engineering, 1966, 88(4): 801-810.
15 LI H R, PENG Y, LIU Y, et al. Corrected stress field intensity approach based on averaging superior limit of intrinsic damage dissipation work[J]. Journal of Iron and Steel Research International, 2018, 25(10): 1094-1103.
16 LEMAITRE J, MARQUIS D. Modeling complex behavior of metals by the “state-kinetic coupling theory”[J]. Journal of Engineering Materials and Technology, 1992, 114(3): 250-254.
17 CHATTI S, FATHALLAH R. A study of the variations in elastic modulus and its effect on springback prediction[J]. International Journal of Material Forming, 2014, 7(1): 19-29.
18 ABDEL-KARIM M. Effect of elastic modulus variation during plastic deformation on uniaxial and multiaxial ratchetting simulations[J]. European Journal of Mechanics: A/Solids, 2010, 30(1): 11-21.
19 YU H Y. Variation of elastic modulus during plastic deformation and its influence on springback[J]. Materials & Design, 2009, 30(3): 846-850.
20 LEMAITRE J.损伤力学教程[M].倪金刚,陶春虎,译.北京:科学出版社,1996:56-61. doi:10.1007/978-3-642-18255-6
LEMAITRE J. Course in damage mechanics[M]. Translated by NI J G, TAO C H. Beijing: Science Press, 1996: 56-61.
doi: 10.1007/978-3-642-18255-6
21 张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社,1998:12-23.
ZHANG X, ZHAO J. Applied fatigue damage mechanics of metal components[M]. Beijing: National Defense Industry Press, 1998: 12-23.
22 蔡晓静,许金泉.各种平均应力下高周疲劳极限间的定量关系[J].工程力学,2015(10):25-30. doi:10.6052/j.issn.1000-4750.2014.02.0128
CAI X J, XU J Q. A quantitative relationship of high cycle fatigue limit with mean stresses[J]. Engineering Mechanics, 2015(10): 25-30.
doi: 10.6052/j.issn.1000-4750.2014.02.0128
23 余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997:50-53.
YU S W, FENG X Q. Damage mechanics[M]. Beijing: Tsinghua University Press, 1997: 50-53.
24 杨西荣,杨雨欣,刘晓燕,等.应变比对复合细化超细晶纯钛低周疲劳行为的影响[J].稀有金属材料与工程,2020,49(9):3136-3142.
YANG X R, YANG Y X, LIU X Y, et al. Effect of strain ratio on low cycle fatigue behavior of ultra-fine grained titanium[J]. Rare Metal Materials and Engineering, 2020, 49(9): 3136-3142.
25 彭艳,李浩然,刘洋,等.基于均布临界域本征损伤耗散的疲劳极限等量关系[J].机械工程学报,2019,55(10):54-61. doi:10.3901/jme.2019.10.054
PENG Y, LI H R, LIU Y, et al. Fatigue limit equivalent relation based on uniform intrinsic damage dissipation in critical domain[J]. Journal of Mechanical Engineering, 2019, 55(10): 54-61.
doi: 10.3901/jme.2019.10.054
[1] 徐玉梁, 刘为, 王振, 祖炳锋, 白杨, 刘丽娜. 发动机振动对排气歧管低周疲劳寿命影响研究[J]. 工程设计学报, 2018, 25(3): 330-337.
[2] 申杰斌, 唐东林. 应力场强法中场径参数的研究[J]. 工程设计学报, 2016, 23(1): 22-27.
[3] 刘 喆,陶凤和,贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5): 431-437.
[4] 王新刚, 张义民, 王宝艳. 基于机车车轮的动态疲劳可靠性研究[J]. 工程设计学报, 2009, 16(4): 247-251.
[5] 孙斌祥, 郭乙木. 考虑电阻率变化的电阻法预测金属材料剩余寿命[J]. 工程设计学报, 2001, 8(2): 81-84.