Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (4): 465-473    DOI: 10.3785/j.issn.1006-754X.2022.00.051
建模、仿真、分析与决策     
大型往复压缩机主机振动分析与测试研究
黄志强(),杨仁松,李刚,李涛,黄琴,叶闯
西南石油大学 机电工程学院,四川 成都 610500
Vibration analysis and test study of large reciprocating compressor host
Zhi-qiang HUANG(),Ren-song YANG,Gang LI,Tao LI,Qin HUANG,Chuang YE
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(3809 KB)   HTML
摘要:

在页岩气开采过程中,压缩机主机气缸内的页岩气在短时间内被急剧压缩,页岩气压力高且波动大,机组转速快,致使主机承受着多种复杂、周期性激励载荷的作用,主机及其零部件产生复杂振动,严重影响压缩机的工作可靠性。因此,以大型往复压缩机主机为研究对象,采用瞬态响应分析与实验测试相结合的方法,开展压缩机主机振动研究。主机振动仿真和测试实验结果表明:主机振动变形最大的部位为四缸端部,为0.09 mm;主机最大应力出现在一级进气缓冲罐与四缸连接部,为29.66 MPa;主机二级进气缓冲罐自由端往复方向的振动烈度最大,为14.75 mm/s,振动烈度满足要求,主机振动处于安全状态;仿真与测试所得振动烈度的最大误差为12.7%,在工程允许误差范围内,验证了仿真方法的合理性和正确性。研究成果为进一步降低压缩机主机振动和优化主机结构提供了参考。

关键词: 压缩机主机主机振动振动测试振动烈度    
Abstract:

In the process of shale gas exploitation, the shale gas in the cylinder of the compressor host is rapidly compressed in a short time, resulting in high shale gas pressure and large fluctuation, and fast unit speed. As a result, the host is subjected to a variety of complex and periodic excitation loads, and the host and its components produce complex vibration, which seriously affects the working reliability of the compressor. Therefore, taking large reciprocating compressor host as research object, combining the transient response analysis with experimental test, the vibration research of the compressor host was carried out. The vibration simulation and test results of the host showed that the largest vibration deformation of the host was 0.09 mm at the end of the fourth cylinder; the maximum stress of the host was 29.66 MPa at the connection between the primary air intake buffer tank and the fourth cylinder; the vibration intensity of the free end of the secondary air intake buffer tank of the host in the reciprocating direction was the largest, which was 14.75 mm/s. In this state, the vibration intensity met the requirement, and the vibration of the host was in a safe state; the maximum error of vibration intensity obtained by simulation and test was 12.7%, which was within the allowable error range of the project, and verified the rationality and correctness of the simulation method. The research results provide a reference for further reducing the vibration and optimizing the structure of the compressor host.

Key words: compressor host    host vibration    vibration test    vibration intensity
收稿日期: 2021-06-22 出版日期: 2022-09-05
CLC:  TH 45  
基金资助: 国家自然科学基金资助项目(41902326)
作者简介: 黄志强(1968—),男,四川眉山人,教授,博士生导师,博士,从事油气开发关键技术研究,E-mail:huangzq@swpu.edu.cnhttps://orcid.org/0000-0001-7809-3241
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄志强
杨仁松
李刚
李涛
黄琴
叶闯

引用本文:

黄志强,杨仁松,李刚,李涛,黄琴,叶闯. 大型往复压缩机主机振动分析与测试研究[J]. 工程设计学报, 2022, 29(4): 465-473.

Zhi-qiang HUANG,Ren-song YANG,Gang LI,Tao LI,Qin HUANG,Chuang YE. Vibration analysis and test study of large reciprocating compressor host[J]. Chinese Journal of Engineering Design, 2022, 29(4): 465-473.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.051        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I4/465

图1  压缩机主机的三维模型
部件材料

密度/

(kg/m3)

弹性模量/

(1011 N/m2)

泊松比
机体HT2007 2001.480.310
气缸QT60037 1201.690.286
缓冲罐20钢7 8002.060.300
支墩Q2357 8602.120.288
基座Q3457 8502.060.280
表1  主机各部件材料参数
图2  压缩机主机有限元模型
图3  主机位移约束示意
图4  各压缩缸盖侧和轴侧气体压力随时间的变化曲线
图5  各压缩缸侧向力随时间的变化曲线
图6  各压缩缸主轴承载荷随时间的变化曲线
图7  主机激励载荷施加示意
图8  主机振动变形云图
图9  主机应力云图分布
图10  四缸端部振动速度响应曲线
序号部位振动烈度/(mm/s)
xyz
1一缸端部5.414.744.84
2二缸端部5.634.116.54
3三缸端部6.074.394.05
4四缸端部5.124.385.67
5四缸中体连接部5.834.574.16
6三缸中体连接部5.334.574.33
7曲轴箱自由端上部3.672.433.21
8曲轴箱自由端下部3.352.262.65
9主机基座支撑部4.072.802.58
10一级进气缓冲罐自由端10.667.766.03
11一级排气缓冲罐自由端7.726.676.21
12二级进气缓冲罐自由端14.759.047.27
13二级排气缓冲罐自由端8.368.206.84
14四缸与一级进气缓冲罐连接部4.875.217.56
15四缸与一级排气缓冲罐连接部4.594.436.64
表2  压缩机主机振动较大部位的振动烈度
往复压缩机振动烈度/(mm/s)
固定式非固定式
对称平衡型18.0
角度式、对置式、立式28.028.0
其他卧式45.045.0
微型、无基础45.0
移动式、直联便携式71.0
表3  GB/T 7777—2003中对往复压缩机振动烈度的要求
图11  主机振动实验测试布点示意
图12  四缸端部振动速度仿真结果与测试结果的对比
测点编号振动烈度(mm/s)
xyz
仿真值测试值误差/%仿真值测试值误差/%仿真值测试值误差/%
13.914.5413.93.524.0513.13.694.048.5
24.004.6213.42.482.7610.14.815.3910.8
34.515.0210.22.913.3914.23.253.6210.2
43.654.1111.22.963.5912.84.124.6210.8
54.555.019.23.423.748.53.893.4014.5
64.894.547.73.383.9614.63.223.6211
72.572.839.21.781.979.62.112.4814.9
82.132.5215.51.331.6217.9
92.743.0710.51.712.0817.8
108.719.467.95.636.138.24.295.2117.7
115.506.1710.94.915.307.44.925.6913.5
1210.4812.5216.36.687.6512.75.236.1014.3
136.307.0510.66.056.7510.45.025.569.7
143.463.8510.13.053.5012.95.646.3911.9
153.373.7810.83.023.4512.54.875.5812.7
表4  主机各测点振动烈度的仿真结果和测试结果
1 天工.《页岩气发展规划(2016—2020年)》发布[J].天然气工业,2016,36(10):76.
TIAN Gong. Shale Gas Development Plan (2016—2020) released[J]. Natural Gas Industry, 2016, 36(10): 76.
2 张东晓,杨婷云.页岩气开发综述[J].石油学报,2013,34(4):792-801. doi:10.7623/syxb201304023
ZHANG Dong-xiao, YANG Ting-yun. Overview of shale gas development[J]. Acta Petrolei Sinica, 2013, 34(4): 792-801.
doi: 10.7623/syxb201304023
3 游声刚,郭茜,吴述林,等.页岩气开发的环境影响因素研究综述[J].中国矿业,2015,24(5):53-57. doi:10.3969/j.issn.1004-4051.2015.05.013
YOU Sheng-gang, GUO Qian, WU Shu-lin, et al. Research review on environmental influence factors of shale gas development[J]. China Mining Magazine, 2015, 24 (5): 53-57.
doi: 10.3969/j.issn.1004-4051.2015.05.013
4 张锋.页岩气开发工艺与技术研究[J].石化技术,2021,28(3):118-119. doi:10.3969/j.issn.1006-0235.2021.03.053
ZHANG Feng. Research on shale gas development process and technology [J]. Petrochemical Industry Technology, 2021, 28(3): 118-119.
doi: 10.3969/j.issn.1006-0235.2021.03.053
5 赵京艳,葛凯,褚晨耕,等.国产天然气压缩机应用现状及展望[J].天然气工业,2015,35(10):151-156.
ZHAO Jiang-yan, GE Kai, CHU Chen-geng, et al. Application status and prospects of domestic natural gas compressors[J]. Natural Gas Industry, 2015, 35 (10): 151-156.
6 蒲海丰.D-100/8-C型压缩机曲柄连杆机构动态特性研究及其计算机仿真[D].兰州:兰州理工大学,2008:34-56.
PU Hai-feng. Research on the dynamic characteristics of the crank and connecting rod mechanism of D-100/8-C compressor and its computer simulation [D]. Lanzhou: Lanzhou University of Technology, 2008: 34-56.
7 韩韬.迷宫压缩机机体动力响应分析[J].流体机械, 2007(2):22-25. doi:10.3969/j.issn.1005-0329.2007.02.006
HAN Tao. Analysis of dynamic response of labyrinth compressor body[J]. Fluid Machinery, 2007(2): 22-25.
doi: 10.3969/j.issn.1005-0329.2007.02.006
8 郭丽敏.TA-80往复式压缩机的结构动态特性分析[D].北京:北京化工大学,2008:45-50.
GUO Li-min. Analysis of the structural dynamic characteristics of TA80 reciprocating compressor [D]. Beijing: Beijing University of Chemical Technology, 2008: 45-50.
9 BRANDEIS J P. The use of finite element techniques to predict engine vibration[C/OL]//SAE International Congress and Exposition.[2021-06-15]. . doi:10.4271/820436
doi: 10.4271/820436
10 赵杰,李峰,刘录,等.超高压往复压缩机机体振动分析[J].压缩机技术,2008(1):15-18. doi:10.3969/j.issn.1006-2971.2008.01.005
ZHAO Jie, LI Feng, LIU Lu, et al. Vibration analysis of ultra-high pressure reciprocating compressor body[J]. Compressor Technology, 2008(1): 15-18.
doi: 10.3969/j.issn.1006-2971.2008.01.005
11 杜青川,程颖,任培荣.基于试验模态分析的机体有限元模型修正[J].机械设计,2019,36(S2):14-19.
DU Qing-chuan, CHENG Ying, REN Pei-rong. Airframe finite element model modification based on experimental modal analysis[J]. Journal of Machine Design, 2019, 36(S2): 14-19.
12 宋加会.ZW型往复式压缩机及其管系振动分析[D].淮南:安徽理工大学,2016:23-36.
SONG Jia-hui. Vibration analysis of ZW reciprocating compressor and its piping system [D]. Huainan: Anhui University of Science and Technology, 2016: 23-36.
13 周厚强.大功率往复式压缩机整机振动分析[D].青岛:中国石油大学(华东),2017:46-52.
ZHOU Hou-qiang. Vibration analysis of high-power reciprocating compressors [D]. Qingdao: China University of Petroleum (East China), 2017: 46-52.
14 ZHOU Ying-ming, SONG Zhi-min, ZHAO Hai-feng, et al. Vibration fault analysis in screw compressor and foundation[J]. Applied Mechanics & Materials, 2012, 166-169: 1072-1075. doi:10.4028/www.scientific.net/amm. 166-169.1072
doi: 10.4028/www.scientific.net/amm. 166-169.1072
15 CAI Kai-wen, DENG Zhi-quan, PENG Cong, et al. Suppression of harmonic vibration in magnetically suspended centrifugal compressor using zero-phase odd-harmonic repetitive controller[J]. IEEE Transactions on Industrial Electronics, 2019, 67: 7789-7797. doi:10. 1109/tie.2019.2942574
doi: 10. 1109/tie.2019.2942574
16 中国机械工程学会材料学会.疲劳失效分析[M].北京:机械工业出版社,1987:50-85. doi:10.1139/tcsme-1987-0010
Material Society of Chinese Mechanical Engineering Society. Fatigue failure analysis [M]. Beijing: China Machine Press, 1987: 50-85.
doi: 10.1139/tcsme-1987-0010
17 黄志强,黄琴,陈振,等.往复式压缩机撬装模块振动分析与优化研究[J].噪声与振动控制,2021,41(1):54-60. doi:10.3969/j.issn.1006-1355.2021.01.011
HUANG Zhi-qiang, HHUANG Qin, CHEN Zhen, et al. Research on vibration analysis and optimization of skid-mounted reciprocating compressor[J]. Noise and Vibration Control, 2021, 41(1): 54-60.
doi: 10.3969/j.issn.1006-1355.2021.01.011
18 王庆来.油机曲轴轴承润滑状态及动态强度计算研究[D].武汉:武汉理工大学,2010:34-47. doi:10.25103/jestr.092.15
WANG Qing-lai. Research on the lubrication state and dynamic strength calculation of oil engine crankshaft bearings[D]. Wuhan: Wuhan University of Technology, 2016: 34-47.
doi: 10.25103/jestr.092.15
19 肖矛,林子良,陈放,等. 容积式压缩机机械振动测量与评价: [S].北京:中国标准出版社,2004:4. doi:10.3969/j.issn.1001-0599.2014.11.040. doi:10.3969/j.issn.1001-0599.2014.11.040
XIAO Mao, LIN Zi-liang, CHEN Fang, et al. Measurement and evaluation of mechanical vibration of displacement compressors: [S]. Beijing: China Standard Press, 2024: 4.
doi: 10.3969/j.issn.1001-0599.2014.11.040
[1] 秦少伟, 高云国, 司丽娜, 于萍, 聂晓倩. 雪崩光电二极管高精度三维微调架结构设计与分析[J]. 工程设计学报, 2010, 17(5): 345-349.