Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 247-255    DOI: 10.3785/j.issn.1006-754X.2020.00.023
建模、仿真、分析与决策     
涡轮增压器压气叶轮爆裂转速数值分析与试验研究
王文鼎1, 周东1,2, 陈世凡1,2, 刘扬1, 袁源1
1.重庆江增船舶重工有限公司, 重庆 402284;
2.船舶与海洋工程动力系统国家工程实验室——增压器实验室, 重庆 402284
Numerical analysis and experimental research on bursting rotational velocity of turbocharger compressor impeller
WANG Wen-ding1, ZHOU Dong1,2, CHEN Shi-fan1,2, LIU Yang1, YUAN Yuan1
1.Chongqing Jiangjin Shipbuilding Industry Co., Ltd., Chongqing 402284, China;
2.National Engineering Laboratory for Marine and Ocean Engineering Power Systems—Turbocharger Laboratory, Chongqing 402284, China
 全文: PDF(2724 KB)   HTML
摘要: 随着内燃机不断向高效率、大功率、智能化方向发展,其核心部件涡轮增压器逐渐向高压比、高转速、大流量方向迈进。由于涡轮增压器压气叶轮的转速非常高,压气叶轮爆裂尤其是产生非包容性碎片时会对内燃机运行安全造成严重危害,甚至造成人员伤亡,因此研究涡轮增压器的包容性尤为重要。基于有限元法,针对涡轮增压器包容性(压气叶轮的爆裂转速和弱化方式),分别运用线弹性材料模型及双线性等向强化弹塑性材料模型模拟了涡轮增压器压气叶轮在离心载荷作用下的爆裂转速,并对完整压气叶轮及2种弱化处理的压气叶轮进行了包容性试验。结果表明:运用双线性等向强化弹塑性材料模型计算得到的压气叶轮爆裂转速与试验值约相差2%,而运用常规线弹性材料模型计算得到的压气叶轮爆裂转速与试验值约相差16%,偏保守。同时,2种弱化处理的压气叶轮均在预定转速下爆裂,验证了弱化方式的合理性与准确性;通过控制开槽的尺寸即可实现压气叶轮在预定转速下爆裂。研究结果为后续涡轮增压器压气叶轮包容性分析奠定了基础。
关键词: 涡轮增压器压气叶轮包容性弹塑性爆裂转速    
Abstract: With the continuous development of combustion engine in the direction of high efficiency, great power and intelligence, the turbocharger that is the core component of the combustion engine is gradually moving towards high pressure ratio, high rotational velocity and great flow. Due to the high rotational velocity of the turbocharger compressor impeller, the impeller burst, especially when non-containment debris is generated, will seriously endanger the operation safety of combustion engines, even causing the personal injury or death. Therefore, it is extremely important to research the containment of turbochargers. Based on the finite element method, the bursting rotational velocities of the turbocharger compressor impeller under the centrifugal load were simulated by using the linear elastic material model and bilinear isotropic strengthened elastoplastic material model for the containments of turbocharger (rotational velocity and weakened way of compressor impeller).Then, the containment experiments for the complete compressor impeller and two weakened compressor impellers were carried out. The results showed that the bursting rotational velocities of compressor impellers calculated by the bilinear isotropic strengthened elastoplastic material model had a difference of about 2% with the experimental values, while the difference between the bursting rotational velocities calculated by the linear elastic material model and experimental values was about 16%, which was conservative. At the same time, both weakened compressor impellers burst under the predetermined rotational velocity, which verified the rationality and accuracy of weakened mode. It could be realized that the compressor impeller burst under a predetermined rotational velocity by controlling the size of groove. The research results lay a foundation for the follow-up containment analysis of compressor impeller.
Key words: turbocharger    compressor impleller    containment    elastoplasticity    bursting rotational velocity
收稿日期: 2019-08-21 出版日期: 2020-04-28
:  TK 421.8  
基金资助: 工业和信息化部高技术船舶科研计划“船用低速机工程(一期)”研制经费资助项目
作者简介: 王文鼎(1992—),男,甘肃武威人,工程师,硕士,从事增压器结构强度与可靠性研究,E-mail:wendinglut@126.com,https://orcid.org/ 0000-0003-0478-575X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王文鼎
周东
陈世凡
刘扬
袁源

引用本文:

王文鼎, 周东, 陈世凡, 刘扬, 袁源. 涡轮增压器压气叶轮爆裂转速数值分析与试验研究[J]. 工程设计学报, 2020, 27(2): 247-255.

WANG Wen-ding, ZHOU Dong, CHEN Shi-fan, LIU Yang, YUAN Yuan. Numerical analysis and experimental research on bursting rotational velocity of turbocharger compressor impeller. Chinese Journal of Engineering Design, 2020, 27(2): 247-255.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.023        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/247

[1] 朱大鑫. 涡轮增压与涡轮增压器[M]. 北京:机械工业出版社,1992:241-242. ZHUDa-xin. Trubocharge with turbocharger[M]. Beijing: China Machine Press, 1992: 241-242.
[2] 赵俊生,马朝臣,胡辽平. 车用涡轮增压器叶轮破裂转速的弹塑性数值分析[J]. 机械科学与技术,2008,27 (1): 45-49. doi: 10.3321/j.issn:1003-8728.2008.01.011 ZHAOJun-sheng, MAChao-chen, HULiao-ping. Elastoplasticity numerical analysis of the burst speed of vehicular turbocharger impeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(1): 45-49.
[3] 陈光涛. 几种典型机匣结构的包容性研究[D]. 杭州: 浙江大学化学工程与生物工程学系,2014:62-65. CHENGuang-tao. Research on the containment of several typical casing structures[D]. Hangzhou: Zhejiang University, Department of Chemical Engineering and Biological Engineering, 2014: 62-65.
[4] 张林. 航空发动机机匣包容性准则数值与实验初探[D]. 南京:南京理工大学理学院,2012:47-50. doi: 10.7666/d. y2061962 ZHANGLin. Analysis on the numerical value and test of aero engin containment standard[D]. Nanjing: Nanjing University of Science and Technology, College of Science, 2012: 47-50.
[5] 李春雷. 2A12铝合金本构关系实验研究[D]. 哈尔滨: 哈尔滨工业大学航天学院,2006:44-46. doi: 10.7666/d.D276982 LIChun-lei. Experimental study on the constitutive relation of 2A12 aluminum alloy[D]. Harbin: Harbin Institute of Technology, School of Astronautics, 2006: 44-46.
[6] 张虹,马朝臣. 车用涡轮增压器压气机叶轮强度计算与分析[J]. 内燃机工程,2007,28(1):62-66. doi: 10.3969/j.issn.1000-0925.2007.01.015 ZHANGHong, MAChao-chen. Structure computation and analysis of vehicle turbocharger compressor impeller[J]. Chinese Internal Combustion Engine Engineering, 2007, 28(1): 62-66.
[7] 王正,马同玲.增压器涡轮叶片疲劳蠕变寿命预测方法[J].中国机械工程,2019,30(21):2521-2526. doi: 10.3969/j.issn.1004-132X.2019.21.001 WANGZheng, MATong-ling. Fatigue and creep life prediction method of turbine blades for turbocharger[J]. China Mechanical Engineering,2019, 30(21): 2521-2526.
[8] 王增全,王正.车用涡轮增压器结构可靠性[M].北京:科学出版社,2013:207-212. WANGZeng-quan, WANGZheng. Structural reliability of turbocharger for vehicle application [M]. Beijing:Science Press, 2013: 207-212.
[9] 刚毅. 涡轮增压器的流场分析及结构优化[D]. 长春:吉林大学机械科学与工程学院,2014:58-60. GANGYi. Flow field amalysis and structure optimization of turbocharger[D]. Changchun: Jilin University, School of Mechanical Science and Engineering, 2014: 58-60.
[10] 彭诚. 废气涡轮增压器涡轮叶片流固耦合强度分析[D]. 沈阳:沈阳理工大学汽车与交通学院,2014:48-52. PENGCheng. Analysis of fluid-solid coupling strength of turbine blades for exhaust gas turbocharger[D]. Shenyang: Shenyang University of Technology, School of Automobile and Transportation, 2014: 48-52.
[11] 朱伯芳. 有限单元法原理和作用[M]. 2版. 北京:中国水利电力出版社,1998:198-201. ZHUBo-fang. Principles and functions of finite element method [M]. 2th ed. Beijing: China Water Resources and Electric Power Press, 1998: 198-201.
[12] 杨帆. 多场耦合条件下增压器涡轮叶轮结构强度分析[D]. 太原:中北大学机械工程学院,2012:34-37. doi:10.1115/GT2014-26150 YANGFan. Structural strength analysis of turbocharger turbine under multi-field coupling conditions[D]. Taiyuan: North University of China, School of Mechanical Engineering, 2012: 34-37.
[13] DEC J E. Advanced compression-ignition engines:understanding the in-cylinder processes[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2727-2742. doi: 10.1016/j.proci.2008.08.008
[14] TANCREZM, GALINDOJ, GUARDIOLAC, et al. Turbine adapted maps for turbocharger engine matching[J]. Experimental Thermal and Fluid Science, 2011, 35(1): 146-153. doi:10.1016/j.expthermflusci.2010.07.018
[15] RAY G S, SINKAB K. Computation of centrifugal stress in a radial-flow impeller[J]. Computers and Structures, 1991, 40(3): 731-740. doi: 10.1016/0045- 7949(91)90240-M
[16] HUANGW M, GAOX Y. Tresca and von Mises yield criteria: a view from strain space[J]. Philosophical Magazine Letters, 2004, 84(10): 625-629. doi: 10.1080/09500830512331325091
[17] ABDELMADJIDC, MOHAMEDS A, BOUSSADB. CFD analysis of the volute geometry effect on the turbulent air flow through the turbocharger compressor [J]. Energy Procedia, 2013, 36: 746-755. doi: 10.1016/j.egypro.2013.07.087
[18] KENYONJ A, GRIFFINJ H, FEINERD M. Maximum bladed disk forced response from distortion of a structural model[J]. Journal of Turbomachinery, 2003, 125(2): 352-363. doi: 10.1115/1.1540118
[19] 刘士学,方先清. 透平压缩机强度与振动[M]. 北京:机械工业出版社,1996:234-241. LIUShi-xue, FANGXian-qing. Turbine compressor strength and vibration[M]. Beijing: China Machine Press, 1996: 234-241.
[20] 刘璐璐,宣海军,张娜,等.某涡轮冷却器压气机轮盘包容性研究[C/OL]//第22届全国结构工程学术会议论文集第Ⅲ册.乌鲁木齐, 2013-08-01. 2014-04-18[2019-08-15]. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8105474
LIULu-lu, XUANHai-jun, ZHANGNa, et al. Research on the containment of a turbo cooler compressor wheel[C/OL]//Proceedings of the 22nd National Structural Engineering Conference. Urumqi, 2013-08-01. 2014-04-18[2019-08-15]. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8105474
[21] 宣海军,陆晓,洪伟荣,等. 航空发动机机匣包容性研究综述[J]. 航空动力学报,2010,25(8):1860-1870. doi: 10.13224/j.cnki.jasp.2010.08.012 XUANHai-jun, LUXiao, HONGWei-rong, et al. Review of aero-engine case containment research[J]. Journal of Aerospace Power, 2010, 25(8): 1860-1870.
[1] 桂海莲,李曜,李强,李玉贵,杨霞,黄庆学. 中厚板矫直过程中中性层偏移动态研究[J]. 工程设计学报, 2014, 21(5): 444-448.
[2] 白 杰, 付仁合, 王 伟. 非包容性失效条件下飞机蒙皮厚度的算法[J]. 工程设计学报, 2010, 17(6): 444-448.
[3] 马歆, 金志江. 基于三维效应的弹塑性J积分计算[J]. 工程设计学报, 2002, 9(5): 268-270.