Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 256-262    DOI: 10.3785/j.issn.1006-754X.2020.00.027
建模、仿真、分析与决策     
动静轴结构旋翼轴载荷分离仿真分析与试验研究
黄湘龙1, 尹凤1, 李艳艳2, 王文凯1, 赵思波1
1.中国航空发动机集团 湖南动力机械研究所, 湖南 株洲 412002;
2.湖南工贸技师学院 建筑装饰系, 湖南 株洲 412000
Simulation analysis and experimental study on load separation of rotor shaft with dynamic and static axis structure
HUANG Xiang-long1, YIN Feng1, LI Yan-yan2, WANG Wen-kai1, ZHAO Si-bo1
1.Hunan Aviation Powerplant Research Institute, Aero Engine Corporation of China, Zhuzhou 412002, China;
2.Department of Architecture Decoration,Hunan Technician College of Industry and Commerce, Zhuzhou 412000, China
 全文: PDF(1420 KB)   HTML
摘要: 动静轴结构旋翼轴是一种具有抗弹击能力的新型直升机旋翼轴构型,拟对自主设计的鼓形花键动静轴结构旋翼轴和柔性联轴节动静轴结构旋翼轴进行载荷分离特性研究。利用有限元软件对这2种动静轴结构旋翼轴的载荷分离系数进行仿真分析,并开展多通道加载试验加以验证。结果表明采用7 mm壁厚静轴时动静轴结构旋翼轴的载荷分离系数相比采用4 mm壁厚静轴时明显提高;柔性联轴节动静轴结构旋翼轴的综合载荷分离系数为77.37%,略高于鼓形花键动静轴结构旋翼轴的76.33%。研究结果可为直升机动静轴结构旋翼轴的设计提供指导。
关键词: 动静轴结构旋翼轴载荷分离多通道加载试验    
Abstract: Rotor shaft with dynamic and static axis structure is a new type of rotor shaft configuration with anti-ballistic capability for the helicopter. It is planned to study the load separation characteristics of independently designed drum-shaped spline rotor shaft and flexible coupling rotor shaft with dynamic and static axis structure. Through the finite element software, the load separation coefficients of two kinds of rotor shafts with dynamic and static axis structures were simulated, and the verifiable multi-channel loading tests were carried out. The results showed that when the wall thickness of static shaft was 7 mm, the load separation coefficient of rotor shaft with dynamic and static axis structure was significantly higher than that when the wall thickness of static shaft was 4 mm.The comprehensive load separation coefficient of flexible coupling rotor shaft with dynamic and static axis structure was 77.37%, which was slightly higher than that of drum-shaped spline rotor shaft with dynamic and static axis structure. The research results provide guidance for the design of rotor shaft with dynamic and static axis structure in the helicopters.
Key words: dynamic and static axis structure    rotor shaft    load separation    multi-channel    loading test
收稿日期: 2019-03-18 出版日期: 2020-04-28
CLC:  V 219  
作者简介: 黄湘龙(1987—),男,湖南株洲人,工程师,硕士,从事直升机主减速器研究,E-mail:hxl11hxl11@163.com,https://orcid.org/0000-0001-8492-6529
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄湘龙
尹凤
李艳艳
王文凯
赵思波

引用本文:

黄湘龙, 尹凤, 李艳艳, 王文凯, 赵思波. 动静轴结构旋翼轴载荷分离仿真分析与试验研究[J]. 工程设计学报, 2020, 27(2): 256-262.

HUANG Xiang-long, YIN Feng, LI Yan-yan, WANG Wen-kai, ZHAO Si-bo. Simulation analysis and experimental study on load separation of rotor shaft with dynamic and static axis structure. Chinese Journal of Engineering Design, 2020, 27(2): 256-262.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.027        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/256

[1] 潘光奇,朱勇.直升机传动系统现状和发展综述[J]. 舰船电子工程,2009,29(11):33-36,39. doi: 10.3969/j.issn.1627-9730.2009.11.009 PANGuang-qi, ZHUYong. Present situation and development summarization of the helicopter transmission system[J]. Ship Electronic Engineering, 2009, 29(11): 33-36, 39.
[2] 王卫刚.直升机传动系统设计方法研究[D].南京:南京航空航天大学航空学院,2011:10-30. doi:10.7666/d.d166411 WANGWei-gang. Research on design method of helicopter transmission system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, College of Aerospace Engineering, 2011:10-30.
[3] 陈铭,徐冠峰,张磊.直升机传动系统和旋翼系统关键技术[J].航空制造技术,2010(16):32-37. doi: 10.3969/j.issn.1671-833X.2010.16.003 CHENMing, XUGuan-feng, ZHANGLei. Key technology of transmission system and rotor system of helicopter[J]. Aeronautical Manufacturing Technology, 2010(16): 32-37.
[4] 荚淑萍.AH-64A机身结构设计及其验证[J].直升机技术,1994(3):21-29. JIAShu-ping. Airframe design and demonstration of AH-64A helicopter[J]. Helicopter Technology,1994(3): 21-29.
[5] W.约翰逊,孙如林,高义中,等.直升机理论[M].北京:航空工业出版社,1991:110-116. JOHNSONW, SUNRu-lin, GAOYi-zhong, et al. Helicopter theory[M]. Beijing: Aviation Industry Press, 1991: 110-116.
[6] 张呈林,郭才根.直升机总体设计[M].北京:航空工业出版社,2006:75-110. ZHANGCheng-lin, GUOCai-gen. Overall helicopter design[M]. Beijing: Aviation Industry Press, 2006: 75-110.
[7] 陈康,刘建新.直升机结构与系统(ME-TH,PH)[M].北京:清华大学出版社,2016:65-73. CHENKang, LIUJian-xin. Helicopter structure and system (ME-TH,PH)[M].Beijing: Tsinghua University Press, 2016: 65-73.
[8] 陈怡枢.直升机新技术和新概念飞行机[J].国际航空,2000(8): 21-26. CHENYi-shu. New helicopter technology and new concept aircraft[J]. International Aviation, 2000(8): 21-26.
[9] 徐新,曹喜金.世界军用直升机发展趋势[J].直升机技术,2009(3):131-135. doi: 10.3969/j.issn.1673-1220.2009.03.028 XUXin, CAOXi-jin. Development trend of military helicopters in the world[J]. Helicopter Technology, 2009(3): 131-135.
[10] 张呈林.未来直升机发展趋势[J].国防科技工业,2010(4):42-45. ZHANGCheng-lin. Future helicopter development trend[J]. National Defense Science and Technology Industry, 2010(4): 42-45.
[11] 孙之钊.直升机强度[M].北京:航空工业出版社, 1990:20-150. SUNZhi-zhao. Helicopter intensity[M]. Beijing: Aviation Industry Press,1990: 20-150.
[12] 吴重光.系统建模与仿真[M].北京:清华大学出版社, 2008:10-130. WUZhong-guang. System modeling and simulation[M]. Beijing: Tsinghua University Press, 2008: 10-130.
[13] 航空航天工业部科学技术研究院.直升机载荷手册[M].北京:航空工业出版社,1991:16-88. Institute of Science and Technology, Ministry of Aerospace Industry. Helicopter payload manual[M]. Beijing: Aviation Industry Press, 1991: 16-88.
[14] 马敬志,范汪明.某型无人直升机旋翼轴有限元分析[J].中国设备工程,2017(23):160-161. doi: 10.3969/j.issn.1671-0711.2017.23.079 MAJing-zhi, FANWang-ming. Finite element analysis of rotor shaft of an unmanned helicopter [J]. China Plant Engineering, 2017(23): 160-161.
[15] 黄珺,刘伟光,沈亚娟.考虑旋翼轴刚度的孤立旋翼固有特性计算[J].直升机技术,2007(3):58-60. doi: 10.3969/j.issn.1673-1220.2007.03.014 HUANGJun, LIUWei-guang, SHENYa-juan. Isolated rotor system dynamic characteristic analysis coupled to the rotor-shaft stiffness[J]. Helicopter Technique, 2007(3): 58-60.
[16] 张洪伟,高相胜,张庆余. ANSYS非线性有限元分析方法及范例应用[M].北京:中国水利水电出版社,2013,1-161. ZHANGHong-wei, GAOXiang-sheng, ZHANGQing-yu. ANSYS nonlinear finite element analysis method and case application[M]. Beijing: China Water Resources and Hydropower Press, 2013: 1-161.
[17] 李添良,周力,孙驹.锥齿轮减速器的有限元整体建模与分析[J].机械传动,2012,36(10):60-61. doi: 10.16548/j.issn.1004.2539.2012.10.022 LITian-liang, ZHOULi, SUNJu. Integrated finite element modeling and analysis on spiral bevel gear reducer[J]. Mechanical Transmission, 2012, 36(10): 60-61.
[18] 王泽峰,宋日晓. 有限元模拟电桥的直升机旋翼轴拉力与扭矩测量方法[J].科学技术与工程,2019,19(18):329-333. doi: 10.3969/j.issn.1671-1815.2019.18.050 WANGZe-feng, SONGRi-xiao. Measuring method of helicopter rotor-shaft thrust and torque based on finite element method analog bridge[J]. Science Technology and Engineering, 2019, 19(18): 329-333.
[19] 张文军,吕伯平.某型直升机旋翼轴载荷测试方法研究[J].计测技术,2006,26(1):42-43,51. doi: 10.3969/j.issn.1674-5795.2006.01.014 ZHANGWen-jun, Bo-pingLü. Research of testing method of rotor shaft loading of one type of helicopter[J]. Metrology & Measurement Technology, 2006, 26(1): 42-43, 51.
[20] 章海红,寇富军.直11旋翼轴载荷测试研究[J].直升机技术,2002(1):25-28. doi: 10.3969/j.issn.1673-1220.2002.01.007 ZHANGHai-hong, KOUFu-jun. Testing rotor shaft load for a Z11 helicopter [J]. Helicopter Technology, 2002(1): 25-28.
[1] 王恒, 孙小明, 邵彦, 肖后昆, 张小龙. 基于试验台架的轮胎测温系统研究[J]. 工程设计学报, 2018, 25(5): 590-596.
[2] 倪健, 杨预立, 邢强, 徐海黎. 基于LabVIEW的多通道视觉测速系统设计[J]. 工程设计学报, 2018, 25(2): 209-215.
[3] 刘莉, 高昆, 汪乐宇. 流水线技术实现高效多通道∑/△型ADC数据采集系统[J]. 工程设计学报, 2002, 9(5): 279-282.