Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 154-161    DOI: 10.3785/j.issn.1006-754X.2020.00.020
创新设计     
可变摩擦力触感移动终端的汉语盲文编码设计
张帆, 褚少微, 吉娜烨
浙江传媒学院 媒体工程学院, 浙江 杭州 310018
Chinese Braille encoding design for mobile terminal with variable-friction tactile
ZHANG Fan, CHU Shao-wei, JI Na-ye
College of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, China
 全文: PDF(1266 KB)   HTML
摘要: 在智能触屏移动终端上表达盲文是一件具有深刻现实意义但又充满挑战的工作。为了让视障人士能够通过摸读智能触屏移动终端上的盲文来获取信息,提出了3种基于可变摩擦力触感的移动终端通用汉语盲文编码方法,分别为通用盲文编码方法、声调嵌入编码方法及4行2列编码方法。基于压电传感器的超声震荡波可在物体表面产生可变摩擦力触感的原理,在智能移动终端上实现汉语盲文触感编码。通过对12名盲人用户进行2次系统实验,从摸读效率、摸读准确率和用户满意度方面对编码方法进行可用性评估。首先,对3种编码方法进行可用性评估(实验1),然后基于实验1的结果,挑选4行2列编码方法与基于向右滑动摸读方式的振动马达触觉反馈编码方法进行可用性对比(实验2)。实验1结果显示,3种编码方法的平均摸读效率分别为8.82,4.91,4.12 s/汉字,平均摸读准确率分别为98.6%,96.8%,98.6%,4行2列编码方法在用户满意度方面的综合得分最高。实验2结果表明,与基于向右滑动摸读方式的振动马达触觉反馈编码方法相比,4行2列编码方法的摸读效率、摸读准确率及用户满意度更高。综上所述,采用4行2列编码方法能够在移动终端上实现对通用汉语盲文的编码和摸读,可为视障人士在智能移动终端上摸读汉语盲文提供新思路。
关键词: 可变摩擦力触感汉语盲文编码方法用户体验人机交互    
Abstract: Characterizing Braille on the smart touch screen mobile terminal is a practically significant but difficult task. In order to enable the visually impaired obtain the information by touching the Braille on the smart touch screen mobile terminal, three common Chinese Braille encoding methods based on mobile terminal with variable friction tactile were proposed, which were general Braille encoding method,tone embedding encoding method and four-lines two-columns encoding method.According to the principle that the ultrasonic vibration generated by piezoelectric sensor could produce variable friction tactile on the object surface, the Chinese Braille tactile code was realized on the smart mobile terminal. Through two systematic experiments on 12 blind users, the usability of encoding method was evaluated from the aspects of reading efficiency, reading accuracy and user satisfaction. Firstly, the usability of three encoding methods was evaluated (experiment 1). Based on the results of experiment 1, the four-lines two-columns encoding method was selected to compare with the vibration motor tactile feedback encoding method based on right-sliding touch reading mode for usability. The results of experiment 1 showed that the average reading efficiency of three encoding methods was 8.82, 4.91 and 4.12 s/Chinese character, and the average reading accuracy was 98.6%, 96.8%, and 98.6%, respectively. Among them, the score of four-lines two-columns encoding method was the highest. The results of experiment 2 showed that,compared with the vibration motor tactile feedback encoding method based on right-sliding touch reading mode, the four-lines two-columns encoding method had higher reading efficiency, reading accuracy and user satisfaction. In conclusion, using the four-lines two-columns encoding method is able to encode and read the common Chinese Braille on the mobile terminal, which can provide a new way for the visually impaired to read Braille on smart mobile terminal.
Key words: variable-friction tactile    Chinese Braille encoding method    user experience    human-computer interaction
收稿日期: 2019-07-24 出版日期: 2020-04-28
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(61502415);浙江省公益技术研究资助项目(2016C31087)
作者简介: 张帆(1983—),男,广东潮州人,讲师,硕士,从事数字娱乐、人机交互技术研究,E-mail:FanZhang@cuz.edu.cn, https://orcid.org/0000-0002-9534-1777
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张帆
褚少微
吉娜烨

引用本文:

张帆, 褚少微, 吉娜烨. 可变摩擦力触感移动终端的汉语盲文编码设计[J]. 工程设计学报, 2020, 27(2): 154-161.

ZHANG Fan, CHU Shao-wei, JI Na-ye. Chinese Braille encoding design for mobile terminal with variable-friction tactile. Chinese Journal of Engineering Design, 2020, 27(2): 154-161.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.020        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/154

[1] 中国残疾人联合会教育就业部.国家通用盲文方案: GF0019—2018[S]. 北京:求真出版社,2018:1. Ministry of Education and Employment, China Disabled Persons' Federation. Chinese common Braille scheme: GF0019-2018[S].Beijing: Publishing House of Qiuzhen, 2018: 1.
[2] 钟经华. 国家通用盲文方案研究[J]. 中国特殊教育,2018(6):41-46. doi:10.3969/j.issn.1007-3728.2018.06.008 ZHONGJing-hua.On the common Chinese Braille [J]. Chinese Journal of Special Education, 2018(6): 41-46.
[3] AL-QUDAHZ, DOUSHI A, ALKHATEEBF, et al. Reading Braille on mobile phones: a fast method with low battery power consumption[C]//Proceedings of the 2011 International Conference on User Science and Engineering (i-USEr). Shah Alam, Selangor, Nov. 29-Dec. 1, 2011.doi:10.1109/iUSEr.2011.6150549
[4] 褚少微,朱科颖. 手机盲文触感阅读方法的设计与评估[J]. 北京理工大学学报,2019,39(2):181-186. doi: 10.15918/j.tbit 1001-0645.2019.02.012 CHU Shao-wei ZHU Ke-ying. Designing for tactile Braille reading methods on smartphones[J]. Transactions of Beijing Institute of Technology, 2019, 39(2):181-186.
[5] 褚少微. 振动触觉的量化感知与触觉文字编码设计[J]. 计算机辅助设计与图形学学报,2019,31(6):1046-1052. doi: 10.3724/SP.J.1089.2019.17291 CHUShao-wei. Understanding the perception of vibrations and designing tactile reading onsmartphones[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(6): 1046-1052.
[6] JAYANTC, ACUARIOC, JOHNSONW, et al. V-braille: haptic braille perception using a touch-screen and vibration on mobile phones[C]// Proceedings of the ASSETS. Orlando, FL, Oct. 25-27, 2010. doi:10.1145/1878803.1878878
[7] RANTALAJ, RAISAMOR, LYLYKANGASJ, et al. Methods for presenting Braille characters on a mobile device with a touchscreen and tactile feedback [J]. IEEE Transactions on Haptics, 2009, 2(1): 28-39. doi: 10.1109/TOH.2009.3
[8] OLIVEIRAJ, GUERREIROT, NICOLAUH, et al. BrailleType: unleashing Braille over touch screen mobile phones[C]//Proceedings of the IFIP Conference on Human-computer Interaction. Berlin: Springer-Verlag, 2011: 100-107. doi:10.1007/978-3-642-23774-4_10
[9] SOUTHERNC, CLAWSONJ, FREYB, et al. An evaluation of BrailleTouch: mobile touchscreen text entry for the visually impaired[C]//Proceedings of the 14th International Conference on Human-computer Interaction with Mobile Devices and Services. San Francisco, Sep. 21-24, 2012. doi:10.1145/2371574.2371623
[10] WATANABET, FUKUIS. A method for controlling tactile sensation of surface roughness using ultrasonic vibration[C]//Proceedings of the 1995 IEEE International Conference on Robotics and Automation. Nagoya, May 21-27,1995.
[11] DAIX, COLGATEJ E, PESHKINM A. LateralPaD: a surface-haptic device that produces lateral forces on a bare finger[C]// Proceedings of the 2012 IEEE Haptics Symposiumn (HAPTICS). Vancouver, Mar. 4-7,2012.doi:10.1109/HAPTIC.2012.6183753
[12] MULLENBACHJ, SHULTZC, COLGATEJ E, et al. Exploring affective communication through variable-friction surface haptics[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Toronto, Apr. 26-May 1, 2014. doi:10.1145/2556288.2557343
[13] MULLENBACHJ, SHULTZC, PIPERA M, et al. Surface haptic interactions with a TPad tablet[C]// Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology. Scotland, United Kingdom, Oct. 8-11, 2013.
[14] WINFIELDL, GLASSMIREJ, COLGATEJ E, et al. T-pad: tactile pattern display through variable friction reduction[C]//Proceedings of the Second Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07).Tsukaba,Mar.22-24,2007.doi:10.1109/WHC.2007.105
[15] MULLENBACHJ, SHULTZC, PIPERA M, et al. Tpad fire: surface haptic tablet[C]//Conference of HAID Haptic and Audio Interaction Design, Daejeon, Apr. 4-5, 2013.
[16] CHUS W, ZHANGF, JIN, et al. Experimental evaluation of tactile patterns over frictional surface on mobile phones[C]// Fifth International Symposium of Chinese CHI, Guangzhou, Jun.8-9,2017. doi:10.1145/3080631.3080639
[17] ZHANGF, CHUS W, JIN, et al. Design and evaluation of tactile number reading methods on smartphones[C]// Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). Singapore, Jun.6-8,2018.doi:10.1109/ICIS.2018.8466412
[18] ZHANGF, CHUS W, JIN, et al. Defining a model for development of tactile interfaces on smartphones [C]//Proceedings of the International Conference on Human-Computer Interaction. Las Vegas, Jun. 15-20, 2018. doi:10.1007/978-3-319-91244-8_50
[19] JOSHIA, KALES, CHANDELS, et al. Likert scale: explored and explained[J]. British Journal of Applied Science & Technology, 2015, 7(4): 396-403. doi:10.9734/BJAST/2015/14975
[1] 王春香, 纪康辉, 王耀, 刘流. 快速成型技术中分段算法的研究综述[J]. 工程设计学报, 2021, 28(4): 399-406.
[2] 姚寿文, 胡子然, 柳博文, 丁佳, 常富祥, 栗丽辉. 基于实时装配状态感知和直观性交互的虚拟现实辅助维修训练[J]. 工程设计学报, 2021, 28(1): 14-24.
[3] 尤乾, 吕健, 李阳, 金昱潼, 赵子健. 基于Fitts定律的虚拟现实小目标选择模型[J]. 工程设计学报, 2019, 26(4): 416-422.
[4] 郭冰菁, 毛永飞, 韩建海, 李向攀, 马金琦. 步态康复训练机器人人机交互信息感知系统[J]. 工程设计学报, 2019, 26(3): 252-259.
[5] 姚继权, 李晓豁. 计算机图形学人机交互中三维拾取方法的研究[J]. 工程设计学报, 2006, 13(2): 116-120.