Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (6): 617-629    DOI: 10.3785/j.issn.1006-754X.2018.06.001
设计理论与方法学     
机器人力控末端执行器综述
张国龙1,2, 张杰1, 蒋亚南2, 杨桂林1, 张驰1
1. 中国科学院宁波材料技术与工程研究所 浙江省机器人与智能制造装备技术重点实验室, 浙江 宁波 315201;
2. 宁波大学科学技术学院 机械与建筑学院, 浙江 宁波 315212
Review of robotic end-effector with force control
ZHANG Guo-long1,2, ZHANG Jie1, JIANG Ya-nan2, YANG Gui-lin1, ZHANG Chi1
1. Key Laboratory of Robotic and Intelligent Manufacturing Equipment Technology of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Science, Ningbo 315201, China;
2. Department of Mechanical Engineering & Architecture, College of Science & Technology, Ningbo University, Ningbo 315212, China
 全文: PDF(9449 KB)   HTML
摘要:

随着制造业的智能化发展,机器人抛光、打磨、去毛刺和装配等连续接触式作业的需求日益增加。力控末端执行器作为机器人力-位混合控制与连续接触式作业的关键部件,其性能对于提升机器人作业质量和拓展应用范围具有重要影响。因此,对现有机器人力控末端执行器进行研究,分析其性能特点与关键技术,指明其发展方向,对于高性能力控末端执行器的研制具有重要意义。首先,介绍了力控末端执行器的发展背景,阐述了其组成与分类、工作模式和工作原理;其次,简述了力控末端执行器研发中涉及并联机构构型综合理论与优化技术、恒力补偿作动部件设计技术、质量力补偿技术、柔性碰撞技术、解耦控制技术和力波动抑制技术等;然后,分别对机械式、气动式和电驱式等单自由度与多自由度力控末端执行器的国内外研究现状进行了概述,并分析了各自的优缺点;最后,指出力控末端执行器将向高精度、高频响、电驱化、多自由度柔顺、重载化、高集成化和智能化等方向发展。分析表明,当前普遍应用的力控末端执行器多为机械式或气动式,但存在迟滞大、响应速度较慢和力控制精度不高等缺点,且仅能实现单自由度恒力控制,因此,开展高精度高频响的智能电驱式多自由度力控末端执行器的研制,对于提高机器人连续接触式作业系统的力控制精度、曲面适应性、加工装配质量和效率具有重要意义,可有效提升工厂机器人智能化作业水平。

关键词: 力控末端执行器力-位混合控制质量力补偿电驱化多自由度    
Abstract:

With the intelligent development of manufacturing industry, industrial robots are more and more widely used for continuous contact operation, such as polishing, sanding, burring and assembling. End-effector with force control is a critical component of robots used for hybrid force/position control and continuous contact operation, which has an important effect on the operation quality and application field extension. In view of the above situation, it is of great importance for developing new robotic end-effector of high-performance to investigate the state, analyze the characteristics and key technology, and forecast the trends of development. The background of end-effector with force control was introduced firstly, and then the composition & classification, working mode and operation principle was presented. The key technologies of end-effector with force control were refined, including the comprehensive theory and optimization technique of parallel manipulator configuration, design technique of constant force compensatory actuator, technique of compensation of mass force, technique of flexible collision and technique of decoupling control. Furthermore, the mechanical, pneumatic, electrically driven end-effector with force control of single-DOF and multi-DOF was detailed summarized, as well as the advantages and disadvantages. The technology trends of the end-effector with force control include high precision and frequency response, electric driving, multi-DOF flexibility, high load capacity, integration and intellectualization. Analysis shows that the mechanical or pneumatic end-effector with force control is widely used nowadays, which has the disadvantages of large lagging, low control precision and response and can only realize constant force control of single-DOF. As a result, research on intelligent and electrically driven robotic end-effector with force control of high precision, response and multi-DOF will play an important role for the improvement of force control precision, surface adaptability, quality and efficiency of processing & assembly, and effectively promote the intelligent operation level of industrial robots.

Key words: end-effector with force control    hybrid force/position control    compensation of mass force    electric driving    multi-DOF (degree of freedom)
收稿日期: 2018-05-11 出版日期: 2018-12-28
CLC:  TP24  
基金资助:

NSFC-浙江两化融合联合基金资助项目(U1609206);宁波市科技重大专项基金资助项目(2017B10014)

通讯作者: 张杰(1981-),男,浙江宁波人,高级工程师,硕士,从事精密运动控制技术、工业机器人应用技术和智能制造装备技术等研究,E-mail:zhangjie@nimte.ac.cn,https://orcid.org/0000-0002-4547-3667     E-mail: zhangjie@nimte.ac.cn
作者简介: 张国龙(1988-),男,江西上饶人,助教,硕士,从事机器人技术、智能制造装备技术和机电液一体化技术研究,E-mail:guolongzhang@aliyun.com,https://orcid.org/0000-0001-9532-4689
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张国龙
张杰
蒋亚南
杨桂林
张驰

引用本文:

张国龙, 张杰, 蒋亚南, 杨桂林, 张驰. 机器人力控末端执行器综述[J]. 工程设计学报, 2018, 25(6): 617-629.

ZHANG Guo-long, ZHANG Jie, JIANG Ya-nan, YANG Gui-lin, ZHANG Chi. Review of robotic end-effector with force control[J]. Chinese Journal of Engineering Design, 2018, 25(6): 617-629.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.06.001        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I6/617

[1] 杨桂林.工业机器人运用技术[J].中国科学院院刊,2015,30(6):785-792. YANG Gui-lin. Applied industrial robotics[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(6):785-792.
[2] 赵亚平,杨桂林,杨巍,等.气电混合式机器人力控末端执行器研究[J].组合机床与自动化加工技术,2016(12):103-106. ZHAO Ya-ping, YANG Gui-lin, YANG Wei, et al. Research on a pneumoelctric robotic end-effector with force control[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(12):103-106.
[3] 李正义.机器人与环境间力/位置控制技术研究与应用[D].武汉:华中科技大学机械科学与工程,2011:7-8. LI Zheng-yi. Research and application of robot force position control methods for robot-environment interaction[D]. Wuhan:Huazhong University of Science and Technology, School of Mechanical Science & Engineering, 2011:7-8.
[4] 马凯超.基于三自由度并联机构的力控末端执行器研究[D].宁波:中国科学院宁波材料技术与工程研究所,2016:2-3. MA Kai-chao. Design and analysis of 3-DOF parallel manipulator for force-controlled end-effector module[D]. Ningbo:Chinese Academy of Sciences, Ningbo Institute of Materials Technology and Engineering, 2016:2-3.
[5] LIU C H. The polishing of molds and dies using a compliance tool holder mechanism[J]. Journal of Materials Processing Technology, 2005, 166(2):230-236.
[6] 王平.模具自动抛光机器人的运动控制研究[D].长沙:湖南大学机械与运载工程学院,2007:11-13. WANG Ping. Study on the control of robotic motion of mould automatic polishing[D]. Changsha:Hunan University, School of Mechanical and Vehicle Engineering, 2007:11-13.
[7] RYUH Beom-Sahng, PARK Sang Min, PENNOCK Gordon R. An automatic tool changer and integrated software for a robotic die polishing station[J]. Mechanism and Machine Theory, 2006, 41(4):415-432.
[8] BRECHER Christian, TUECKS Roland, ZUNKE Richard. Development of a force controlled orbital polishing head for free form surface finishing[J]. Machine Tool, 2010, 4(2/3):269-277.
[9] 禹鑫燚,邢双,欧林林.抛光工业机器人主动恒力装置设计研究[J].高技术通讯,2017,27(5):434-441. YU Xin-yi, XING Shuang, OU Lin-lin. Design and research of active constant force device for industrial polishing robots[J]. Chinese High Technology Letters, 2017, 27(5):434-441.
[10] 苏州大学.一种气囊抛光工具、系统和方法:201410669176.6[P].2014-11-20. Soochow University. Air bag polishing tool and system and method:201410669176.6[P]. 2014-11-20.
[11] 苏州大学.一种工业机器人抛磨作业的力控法兰及抛磨方法:201510522550.4[P].2015-08-24. Soochow University. Force-controlled flange for polishing operation of industrial robot and polishing method:201510522550.4[P]. 2015-08-24.
[12] 黄婷,孙立宁,王振华.基于被动柔顺的机器人抛磨力/位混合控制方法[J].机器人,2017,39(6):776-785. HUANG Ting, SUN Li-ning, WANG Zhen-hua. Hybrid force/position control method for robotic polishing based on passive compliance structure[J]. Robot, 2017, 39(6):776-785.
[13] The University of Texas System. Method for applying constant force with nonlinear feedback control and constant force device using same:US005448146[P]. 1995-09-05.
[14] ERLBACHER Edwin A. Force control basics[J]. Industrial Robot, 2000, 27(1):20-29.
[15] FerRobotics Compliant Robot Technology GmbH. Active handling apparatus and method for contact tasks:US20140005831A1[P]. 2014-01-02.
[16] 金明生.模具自由曲面气囊抛光机理及工艺研究[D].杭州:浙江工业大学机械工程学院,2009:33-35. JIN Ming-sheng. Gasbag polishing mechanism and process on free-form surface mould[D]. Hangzhou:Zhejiang University of Technology, College of Mechanical Engineering, 2009:33-35.
[17] 计时鸣,金明生,张宪.应用于模具自由曲面的新型气囊抛光技术[J].机械工程学报,2007,43(8):2-6. JI Shi-ming, JIN Ming-sheng, ZHANG Xian. Novel gasbag polishing technique for freee-form mold[J]. Journal of Mechanical Engineering, 2007, 43(8):2-6.
[18] JI Shi-ming, JIN Ming-sheng, ZHANG Li. Design of spinning-inflated-gasbag polishing tool and its automated system for free-form mould[C]//Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, Apr.16-18, 2006.
[19] 浙江工业大学.主辅复合式气囊抛光工具:201010156371.0[P].2010-04-27. Zhejiang University of Technology. Main and auxiliary combined type air bag polishing tool:201010156371.0[P]. 2010-04-27.
[20] 浙江工业大学.电动气压可调式柔性抛光工具:200510050122.2[P].2005-06-17. Zhejiang University of Technology. Electric-pheumatic adjustable flexible polishing tool:200510050122.2[P]. 2005-06-17.
[21] 陈伟强.连续进动气囊抛光技术研究[D].杭州:浙江工业大学机械工程学院,2011:27. CHEN Wei-qiang. Research on gasbag polishing with continuous precession process[D]. Hangzhou:Zhejiang University of Technology, College of Mechanical Science and Engineering, 2011:27.
[22] JIN Ming-sheng, JI Shi-ming, ZHANG Cai. Simulation and experiment research of magnetic gasbag polishing[C]//2012 Asia-Pacific Conference on Applied Electromagnetics. Melaka, Malaysia:IEEE, 2012:28-31.
[23] 广东工业大学.电磁一维恒力装置及其控制方法:201510083728.X[P].2015-02-14. Guangdong University of Technology. Electromagnetism one-dimensional constant force device and control method:201510083728.X[P]. 2015-02-14.
[24] MOHAMMAD Abd EI Khalick, HONG Jie, WANG Dan-wei. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49:54-65.
[25] HONG Jie, MOHAMMAD Abd EI Khalick, WANG Dan-wei. Improved design of the end-effector for macro-mini robotic polishing systems[C]//Proceedings of the International Conference on Mechatronics and Robotics Engineering, Paris, Feb.8-12, 2017.
[26] 刘靖,陶学恒,李玉光.RCC柔顺手腕的应用概述[J].机电产品开发与创新,2011,24(2):74-76. LIU Jing, TAO Xue-heng, LI Yu-guang. Application summary of remote center compliance wrist[J]. Development & Innovation of Machinery & Electrical Products, 2011, 24(2):74-76.
[27] 杜松年,彭商贤,金佐中.层叠型弹性杆RCC柔顺手腕设计计算[J].天津大学学报,1995,28(1):19-25. DU Song-nian, PENG Shang-xian, JIN Zuo-zhong. Design and calculation of the laminated elastomer remote center compliance robot wrist[J]. Journal of Tianjin University, 1995, 28(1):19-25.
[28] 张昆,冯立群,余昌钰.机器人柔顺手腕的球面齿轮设计研究[J].清华大学学报,1994,34(2):1-6. ZHANG Kun, FENG Li-qun, YU Chang-yu. The research of the design of spherical gear transmission used in flexible wrist of robots[J]. Journal of Tsinghua University, 1994, 34(2):1-6.
[29] AHN J H, SHEN Y F, KIM H Y. Development of a sensor information integrated expert system for optimizing die polishing[J]. Robotics and Computer Integrated Manufacturing, 2001, 17(4):269-276.
[30] AHN J H, LEE C, JEONG H D. Intelligently automated polishing for high quality surface formation of sculptured die[J]. Journal of Materials Processing Technology, 2002, 130-131:339-344.
[31] 周元员.新型曲面研抛终端执行器的研究[D].长春:吉林大学机械科学与工程学院,2009:13-15. ZHOU Yuan-yuan. Study on a new type of surface polishing end effector[D]. Changchun:Jilin University, College of Mechanical Engineering, 2009:13-15.
[32] 唐杰,王涛,常青.模具抛光机器人柔性终端执行器设计与分析[J].机械设计与制造,2016(2):263-266. TANG Jie, WANG Tao, CHANG Qing. Design and analysis of flexible end-effector for mould polishing robot[J]. Machinery Design & Manufacture, 2016(2):263-266.
[33] TANG Jie, WANG Tao, YAN Zhi-qi. Design and analysis of the end-effector of the flexible polishing robot[J]. Key Engineering Materials, 2016, 693:58-63.
[34] LIAO Liang, XI Feng-feng (Jeff), LIU Ke-fu. Adaptive control of pressure tracking for polishing process[J]. Manufacturing Science and Engineering, 2010, 132(1):1-12.
[35] LIAO Liang, XI Feng-feng (Jeff), LIU Ke-fu. Modeling and control of automated polishing/deburring process using a dual-purpose compliant toolhead[J]. International Journal of Machine Tools & Manufacture, 2008, 48(12/13):1454-1463.
[36] SIM Tian-soon, MARCELO Hang Jr, LIM Kah-bin. A compliant end-effector coupling for vertical assembly design and evaluation[J]. Robotics & Computer-Integrated Manufacturing, 1997, 13(1):21-30.
[37] FURUKAWA T, RYE D C, DISSANAYAKE M W M G. Automated polishing of an unknown three-dimensional surface[J].Robotics & Computer-Integrated Manufacturing, 1996, 12(3):261-270.
[38] 吕建军.基于机器人的模具抛光柔顺执行机构研究[D].成都:西华大学机械工程学院,2012:13-15. LÜ Jian-jun. Research on design of compliant actuator for mold polishing based-on industrial robot[D]. Chengdu:Xihua University, College of Mechanical Engineering, 2012:13-15.
[39] 朱伟,汪源,沈惠平.仿腕关节柔顺并联打磨机器人设计与试验[J].农业机械学报,2016,47(2):402-407. ZHU Wei, WANG Yuan, SHEN Hui-ping. Design and experiment of compliant parallel humanoid wrist joint polishing robot[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(2):402-407.
[40] 段继豪,史耀耀,李小彪.整体叶盘柔性磨头自适应抛光实现方法[J].航空学报,2011,32(5):934-940. DUAN Ji-hao, SHI Yao-yao, LI Xiao-biao. Adaptive polishing for blisk by flexible grinding head[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):934-940.
[41] 南宁宇立仪器有限公司.一种恒力浮动装置:201710813044.X[P].2017-09-11. Sunrise Instruments Co., Ltd.. Constant-force floating device:201710813044.X[P]. 2017-09-11.
[42] Regents of the University of Minnesota. Active compliant end-effector with force, angular position, and angular velocity sensing, US004884941[P]. 1989-12-05.
[43] LOPES Antonio, ALMEIDA Fernando. A force-impedance controlled industrial robot using an active robotic auxiliary device[J]. Robotics & Computer-Integrated Manufacturing, 2008, 24(3):299-309.
[44] KUNIEDA Masanori, NAKAGAWA Takeo, HIGUCHI Toshiro. Robot-polishing of curved surface with magnetically pressed polishing tool[J]. Journal of the Japan Society for Precision Engineering, 1988, 54(1):125-131.
[1] 李海月, 程泽, 赵丹妮, 王浩威, 李德勇, 张加波, 宋晓东, 赵琳娜. 基于悬吊法和气浮法的多自由度微重力模拟展开试验系统研究[J]. 工程设计学报, 2020, 27(4): 508-515.
[2] 张 鄂,许林安,刘中华,李晓玲. 自由度坐姿人体上体系统动力学建模与振动特性研究[J]. 工程设计学报, 2008, 15(4): 244-249.