Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (1): 10-16    DOI:
    
Empirical likelihood for double generalized linear models
WANG Zi-hao, WU Liu-cang, DAI Lin 
Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Based on profiled empirical likelihood method, the quasi-likelihood functions of the double generalized linear models were considered as the constraints of the profile empirical likelihood ratio function. The confidence intervals of unknown parameters in double generalized linear models were constructed. Finally, simulation studies show that this method is more useful and effective than normal approximation.

Key wordsdouble generalized linear models      empirical likelihood      confidence interval      $\chi^2$ distribution     
Received: 12 July 2014      Published: 06 June 2018
CLC:  O212.1  
Cite this article:

WANG Zi-hao, WU Liu-cang, DAI Lin. Empirical likelihood for double generalized linear models. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 10-16.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I1/10


双重广义线性模型的经验似然推断

基于截面经验似然方法, 将双重广义线性模型的拟似然估计方程作为截面经验似然比函数的约束条件, 构造了均值模型和散度模型未知参数的置信区间. 最后通过数据模拟, 将该方法与正态逼近方法比较, 说明了该方法是有效和可行的.

关键词: 双重广义线性模型,  经验似然,  置信区间,  $\chi^2$分布 
[1] WANG Bing-xing, WU Fang-tao, ZHOU Jun-xing. Statistical analysis for the environment factor under the gamma distribution[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 493-500.
[2] YUAN Qiao-li, WU Liu-cang, DAI Lin. Parameters estimation for mixture of double generalized linear models [J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 267-276.
[3] BAI Yong-xin, TIAN Mao-zai. Confidence interval construction for the incidence of chronic diseases[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 136-142.
[4] LI Yun-xia, LIU Wei-tang. Change point testing in logistic regression model based on empirical likelihood method [J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 367-378.