Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (1): 17-30    DOI:
    
Semi-parametric Bayesian analysis for factor analysis model mixed with hidden Markov model
XIA Ye-mao, GOU Jian-wei, LIU Ying-an
School of Sci., Nanjing Forestry Univ., Nanjing 210037, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Factor analysis model plays an important role in characterizing dependence of latent factors on the observed variables and interpreting the correlation among the observed indexes (variables). However, in real applications, data set often takes on the temporal variability, multimode, skewness, and so on. In this paper, we extended the classic factor analysis model to the dynamic factor model mixed with homogenous hidden Markov model, and developed a Bayesian semiparametric analysis procedure. Blocked Gibbs sampler is used to implement posterior sampling. The empirical results show that our method is effective.

Key wordshidden Markov model      factor analysis model      Bayesian semiparametric analysis      blocked Gibbs sampler     
Received: 26 July 2014      Published: 06 June 2018
CLC:  O212.8  
  O212.4  
Cite this article:

XIA Ye-mao, GOU Jian-wei, LIU Ying-an. Semi-parametric Bayesian analysis for factor analysis model mixed with hidden Markov model. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 17-30.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I1/17


隐马尔可夫因子分析模型的半参数贝叶斯分析

因子模型在刻画潜在因素(因子)与观测变量间的影响关系并进而解释多元观测指标( 变量)间的相关性方面具有重要作用. 在实际应用中, 观测数据往往呈现出时序变异多峰, 偏态等特性. 将经典的因子分析延伸到带有时齐隐马尔可夫模型的动力因子模型, 并建立了半参数贝叶斯分析程序. 分块GIBBS抽样器用以后验抽样. 经验结果展示所建立的统计程序是有效的.

关键词: 隐马尔可夫模型,  因子分析模型,  半参数贝叶斯,  分块GIBBS抽样器 
[1] WEI Shi, LI Ze-yi. Bayes estimation of Burr XII distribution parameter in the composite LINEX loss of symmetry[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 49-54.
[2] HE Chao-bing. Bayesian parameter estimation of failure rate model with a change point for truncated and censored data[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 413-427.
[3] CHENG Di, ZHANG Shi-bin. Bayesian inference for dynamic heterogeneity stochastic frontier model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 127-135.
[4] HE Chao-bing. Parameter estimation of Weibull distribution with multiple change points for truncated and censored data[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 127-138.