|
|
一类广义非线性Schrodinger扰动方程的泛函渐近解法 |
欧阳成1, 汪维刚2, 石兰芳3, 莫嘉琪4 |
1. 湖州师范学院 理学院, 浙江湖州 313000
2. 桐城师范高等专科学校 理工系, 安徽桐城 231402
3. 南京信息工程大学 数学与统计学院, 江苏南京 210044
4. 安徽师范大学 数学系, 安徽芜湖 241003 |
|
A class of functional asymptotic method for the generalized nonlinear disturbed Schrodinger equation |
OUYANG Cheng1, WANG Wei-gang2, SHI Lang-fang3, MO Jia-qi4 |
1. Faculty of Science, Huzhou University, Huzhou 313000, China
2. Tongcheng Teaching Department , Anqing Teacher’s College, Tongcheng 231400, China
3. College of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China
4. Department of Mathematics, Anhui Normal University, Wuhu 241003, China |
引用本文:
欧阳成, 汪维刚, 石兰芳, 莫嘉琪. 一类广义非线性Schrodinger扰动方程的泛函渐近解法[J]. 高校应用数学学报, 2016, 31(2): 176-184.
OUYANG Cheng, WANG Wei-gang, SHI Lang-fang, MO Jia-qi. A class of functional asymptotic method for the generalized nonlinear disturbed Schrodinger equation. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 176-184.
链接本文:
http://www.zjujournals.com/amjcua/CN/
或
http://www.zjujournals.com/amjcua/CN/Y2016/V31/I2/176
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|