Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (2): 244-257    DOI: 10.3785/j.issn.1008-9209.2023.12.182
Research Articles     
Diversity analysis of phenotypic traits and comprehensive evaluation of Camellia oleifera excellent germplasm resources
Kaifeng XING(),Jian ZHANG(),Shang CHEN,Lidong ZHANG,Haoxing XIE,Yao ZHAO,Jun RONG
School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
Download: HTML   HTML (   PDF(2295KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Camellia oleifera is the woody oil crop with the highest total oil production and the largest cultivated area in China. To improve the mining and utilization of C. oleifera excellent germplasm resources in China, this study used principal component analysis, correlation analysis, cluster analysis, nested analysis of variance, multiple regression analysis, the coefficient of variation, the phenotypic differentiation coefficient, and the Shannon-Wiener diversity index to explore the diversity of phenotypic traits of 560 C. oleifera excellent germplasm resources and the correlation between the phenotypic traits and environmental factors. The 560 C. oleifera excellent germplasm resources were comprehensively evaluated and ranked using the entropy-weighted TOPSIS method. The results showed that there was abundant genetic variation in the 560 C. oleifera excellent germplasm resources, and the Shannon-Wiener diversity indexes of 34 phenotypic traits ranged from 0.05 to 2.35, with a mean value of 1.06, while the coefficients of variation for quantitative traits ranged from 3.02% to 53.33%, with a mean value of 23.25%. The mean values of the variance components among and within provenances of C. oleifera were 53.591% and 32.382%, respectively, indicating that the phenotypic trait similarity within provenances of C. oleifera excellent germplasm resources was high and that its variation mainly originated from within provenances. With the increase of latitude and decrease of annual mean temperature, the single fruit mass, seed kernel oil content and saturated fatty acid content of C. oleifera showed a decreasing trend, while the unsaturated fatty acid content showed an increasing trend, indicating that latitude and annual mean temperature were the main environmental factors limiting the growth of C. oleifera. The comprehensive evaluation and ranking results of the entropy-weighted TOPSIS method showed that Changlin 4 had the highest comprehensive score index, and Zhejiang, Yunnan, Anhui, Hunan regions had several selected excellent germplasms in the rank of top 30. These results can provide data support for breeding and seed promotionof C. oleifera.



Key wordsCamellia oleifera      excellent germplasm resources      phenotypic trait      entropy-weighted TOPSIS method      comprehensive evaluation     
Received: 18 December 2023      Published: 25 April 2024
CLC:  S794.4  
Corresponding Authors: Jian ZHANG     E-mail: 2286639921@qq.com;zhangjianlab@126.com
Cite this article:

Kaifeng XING,Jian ZHANG,Shang CHEN,Lidong ZHANG,Haoxing XIE,Yao ZHAO,Jun RONG. Diversity analysis of phenotypic traits and comprehensive evaluation of Camellia oleifera excellent germplasm resources. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 244-257.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.12.182     OR     https://www.zjujournals.com/agr/Y2024/V50/I2/244


普通油茶良种资源表型性状多样性分析与综合评价

普通油茶(Camellia oleifera)是我国总产油量最高、栽培面积最广的木本油料作物。为促进我国普通油茶良种资源的挖掘与利用,本研究使用主成分分析、相关性分析、聚类分析、巢式方差分析、多元回归分析等方法以及变异系数、表型分化系数、香农-维纳多样性指数,探究560份普通油茶良种资源的表型性状多样性及其与环境因子的相关性,并使用熵权TOPSIS法对560份普通油茶良种资源进行综合评价和排序。结果表明,560份普通油茶良种资源存在丰富的遗传多样性,34个表型性状的香农-维纳多样性指数为0.05~2.35,均值为1.06,数量性状的变异系数为3.02%~53.33%,均值为23.25%。普通油茶良种资源34个表型性状种源间和种源内的方差分量均值分别为53.591%和32.382%,说明普通油茶良种资源表型性状种源内相似性较高,其分化主要来自种源间。随着纬度的升高和年平均温度的降低,普通油茶良种资源平均单果质量、种仁含油率及饱和脂肪酸含量呈现下降趋势,而不饱和脂肪酸含量呈现上升趋势,表明纬度和年平均温度是限制普通油茶生长的主要因子。熵权TOPSIS法综合评价和排序结果显示,长林4号综合得分指数最高,浙江、云南、安徽、湖南等地区均有多个选育的良种综合排名在前30以内。本研究结果为普通油茶育种及良种推广提供了数据支撑。


关键词: 普通油茶,  良种资源,  表型性状,  熵权TOPSIS法,  综合评价 

数量性状

Quantitative trait

均值

Mean

标准差

Standard

deviation

极差

Range

最大值

Maximum

最小值

Minimum

变异系数

CV/%

多样性指数

H'

叶长 Leaf length/cm6.180.875.609.283.6814.081.32
叶宽 Leaf width/cm2.980.483.214.801.5916.110.86
叶形指数 Leaf shape index2.100.312.493.761.2714.760.72
平均单果质量 Average fruit mass/g21.4810.7481.8283.211.3950.001.42
鲜出籽率 Fresh seed yield/%42.478.2973.2079.386.1819.521.21
种仁含油率 Seed kernel oil content/%44.246.8758.8370.6311.8015.531.71
油酸含量 Oleic acid content/%81.282.8919.7989.8970.103.560.90
亚油酸含量 Linoleic acid content/%6.613.2317.0017.200.2048.870.89
亚麻酸含量 Linolenic acid content/%0.300.161.391.400.0153.331.17
硬脂酸含量 Stearic acid content/%2.100.695.926.040.1232.861.05
棕榈酸含量 Palmitic acid content/%8.601.3713.5613.860.3015.930.43
饱和脂肪酸含量 Saturated fatty acid content/%10.701.5713.9216.722.8014.670.66
不饱和脂肪酸含量 Unsaturated fatty acid content/%88.192.6621.7297.7276.003.020.81
Table 1 Variation in 13 quantitative traits of C. oleifera excellent germplasm resources

表型性状

Phenotypic trait

种源间

Among provenances

种源内

Within provenances

随机误差

Random error

表型分化系数

Vst/%

均方

Mean

square

F

F value

方差分量

Variance

component/%

均方

Mean

square

F

F value

方差分量

Variance

component/%

均方

Mean

square

方差分量

Variance

component/%

均值

Mean

4.9998.10053.5915.0576.68232.3820.75814.02762.892
树形 Tree posture2.6112.704**53.3731.3161.36326.9010.96519.72666.488

嫩枝绒毛

Downy hairs on shoots

0.3680.28118.5860.3000.22915.1521.31266.26355.090

叶芽颜色

Leaf bud color

3.7926.007**61.9001.7032.69827.8000.63110.30069.008

叶芽绒毛

Leaf bud fluff

1.6053.583**65.4030.4010.89516.3410.44818.25680.010

嫩叶颜色

Young leaf color

5.0016.072**57.0832.9363.56433.5120.8249.40563.009

老叶颜色

Old leaf color

5.4876.083**19.04222.42624.863**77.8280.9023.13019.658

叶片形状

Leaf shape

12.86722.090**93.7420.2770.4752.0180.5824.24097.893

叶缘形状

Leaf margin shape

16.80054.871**89.0351.7635.758*9.3430.3061.62290.503

叶尖形状

Leaf tip shape

3.0403.914**79.4560.0090.0120.2350.77720.30899.705

叶基形状

Leaf base shape

4.3685.865**38.5396.2218.352**54.8880.7456.57341.250

叶长

Leaf length

1.9692.399**12.59812.83915.642**82.1490.8215.25313.297

叶宽

Leaf width

2.6562.862**19.5579.99710.772**73.6100.9286.83320.991

叶形指数

Leaf shape index

4.3885.115**82.4970.0730.0851.3720.85816.13198.364

萼片绒毛

Sepal villus

0.7131.10330.5880.9711.50141.6560.64727.75642.340

花瓣颜色

Petal color

0.3290.35821.3910.2910.31718.9210.91859.68853.065

雄蕊与雌蕊高度

Stamen and pistil heights

3.3773.478**44.4053.2573.35442.8270.97112.76850.904

柱头开裂

Column head cracks

8.0718.903**47.9027.8718.682**46.7150.9075.38350.627

子房绒毛

Ovarian villus

1.1611.65262.28500.00100.70337.715100.000

果实表面形状

Fruit surface shape

1.9722.742**38.6742.4083.34747.2250.71914.10145.023

果实形状

Fruit shape

8.04612.382**83.0680.9901.52310.2210.6506.71189.044

果实颜色

Fruit color

4.4494.878**61.6551.8552.03325.7070.91212.63970.574

平均单果质量

Average fruit mass

8.55211.592**92.0460.0010.0010.0110.7387.94399.988

鲜出籽率

Fresh seed yield

3.8293.912**68.5100.7810.79813.9740.97917.51783.059

种皮颜色

Testa color

5.7237.615**45.5226.0978.113**48.4970.7525.98248.418

种仁含油率

Seed kernel oil content

6.96310.945**66.3712.8924.546*27.5660.6366.06270.654

油酸含量

Oleic acid content

2.9063.013**25.3097.6127.893**66.2950.9648.39627.629

亚油酸含量

Linoleic acid content

4.4727.417**25.44412.50120.73671.1250.6033.43126.348

亚麻酸含量

Linolenic acid content

5.7597.298**51.7204.5875.813*41.1940.7897.08655.664

硬脂酸含量

Stearic acid content

3.5105.517**59.9791.7062.68129.1520.63610.86867.293

棕榈酸含量

Palmitic acid content

4.54510.749**91.2100.0150.0360.3010.4238.48999.671

饱和脂肪酸含量

Saturated fatty acid content

2.7202.715**59.3500.8610.85918.7871.00221.86375.956

不饱和脂肪酸含量

Unsaturated fatty acid content

2.7106.936**75.4870.4891.25313.6210.39110.89184.714

盛花期

Prime flowering period

15.93227.966**64.4528.21714.424**33.2420.5702.30665.974

果熟期

Fruit ripening period

9.26812.398**15.90348.26264.558**82.8130.7481.28416.110
Table 2 Variance components of phenotypic traits and phenotypic differentiation coefficient among populations of C. oleifera excellent germplasm resources

数量性状

Quantitative trait

叶长

Leaf

length

叶宽

Leaf

width

叶形指数

Leaf shape

index

平均单

果质量

Average

fruit mass

鲜出籽率

Fresh seed

yield

种仁含油率

Seed kernel

oil content

油酸含量

Oleic acid

content

亚油酸含量

Linoleic

acid content

亚麻酸含量

Linolenic

acid content

硬脂酸含量

Stearic acid

content

棕榈酸含量

Palmitic

acid content

饱和脂肪

酸含量

Saturated

fatty acid

content

不饱和脂肪

酸含量

Unsaturated

fatty acid

content

叶长

Leaf length

1.000

叶宽

Leaf width

0.456**1.000

叶形指数

Leaf shape index

0.255**-0.448**1.000

平均单果质量

Average fruit mass

0.135**0.141**-0.0051.000

鲜出籽率

Fresh seed yield

-0.084*-0.008-0.050-0.089*1.000

种仁含油率

Seed kernel oil content

0.0090.118**-0.092*0.0340.120**1.000

油酸含量

Oleic acid content

0.0160.066-0.0700.0510.0030.221**1.000

亚油酸含量

Linoleic acid content

-0.087*0.059-0.112**0.121**0.058-0.260**-0.573**1.000

亚麻酸含量

Linolenic acid content

0.0050.0020.010-0.0300.037-0.086-0.371**0.419**1.000

硬脂酸含量

Stearic acid content

0.081-0.0540.114**-0.063-0.084*0.245**0.260**-0.509**-0.172**1.000

棕榈酸含量

Palmitic acid content

0.041-0.127**0.145**-0.094*-0.0550.027-0.225**-0.248**-0.0080.190**1.000

饱和脂肪酸含量

Saturated fatty acid content

0.082-0.0530.110**-0.162**-0.068-0.022-0.259**-0.091*-0.0670.186**0.312**1.000

不饱和脂肪酸含量

Unsaturated fatty acid content

-0.0810.125**-0.159**0.258**0.033-0.0820.217**0.376**0.134**-0.357**-0.537**-0.516**1.000
Table 3 Correlation analysis of 13 quantitative traits of C. oleifera excellent germplasm resources

类群

Group

叶长

Leaf

length/

cm

叶宽

Leaf

width/

cm

叶形

指数

Leaf

shape

index

平均单

果质量

Average

fruit

mass/g

鲜出

籽率

Fresh

seed

yield/%

种仁

含油率

Seed

kernel oil

content/%

油酸含量Oleic

acid

content/%

亚油酸

含量

Linoleic

acid

content/%

硬脂酸

含量

Stearic

acid

content/%

棕榈酸

含量

Palmitic

acid

content/%

饱和脂肪

酸含量

Saturated

fatty acid

content/%

不饱和脂肪

酸含量

Unsaturated

fatty acid

content/%

16.2253.0672.05122.19842.96946.06881.6197.1991.9928.13110.12388.818
25.9793.0741.96626.63048.44050.98982.7796.3372.1647.6199.78289.116
35.9362.9272.04118.97744.90438.24780.3968.4421.7968.44410.24088.838
46.0852.9442.09327.75646.59834.95579.3138.6671.6839.22510.90887.980
55.8182.8112.09214.22252.93339.96079.8658.5981.7008.69610.39688.463
66.5722.8612.33212.38456.29048.15780.4112.5902.82710.20713.03583.001
76.1032.9852.06313.46739.49443.11081.9396.9972.0418.08810.12988.936
86.4952.8162.35313.54338.31044.20281.3961.1782.73210.55313.28582.574
96.2303.0142.09017.41631.95837.40280.6917.4692.0878.78710.87588.160
106.1333.0292.07012.34542.23653.69181.9734.6832.4898.92911.41886.656
116.2773.0022.12136.72142.95248.55982.9706.3832.0457.7019.74589.353
126.2693.0412.08932.69434.53444.26280.1287.4971.9889.05111.03987.625
136.9742.9402.41637.42912.88938.40078.7439.6001.7148.88610.60088.343
146.7703.1902.14059.00937.04240.11579.8218.2612.3799.16911.54888.082
Table 4 Mean values of phenotypic traits of different groups of C. oleifera excellent germplasm resources
Fig. 1 PCA eigenvalues, contribution rates and cumulative contribution rates of 13 quantitative traits of C. oleifera excellent germplasm resources
Fig. 2 Cluster analysis of 560 C. oleifera excellent germplasm resources based on 12 quantitative traits
Fig. 3 Correlation analysis between traits of average fruit mass, seed kernel oil content, saturated fatty acid content, and unsaturated fatty acid content with latitude of C. oleifera excellent germplasm resources
Fig. 4 Correlation analysis between traits of seed kernel oil content, saturated fatty acid content, unsaturated fatty acid content, and average fruit mass with environmental climate variablesof C. oleifera

数量性状

Quantitative trait

纬度

Latitude

Bio1Bio2Bio7Bio10Bio12
叶长 Leaf length0.043-0.004-0.166**00.0530.005
叶宽 Leaf width0.107*-0.137**0.100*0.019-0.153**-0.163**
叶形指数 Leaf shape index-0.0760.147**-0.281**-0.0220.222**0.183**
平均单果质量 Average fruit mass-0.357**0.288**0.046-0.392**-0.107*0.023
鲜出籽率 Fresh seed yield-0.0730.0050.082-0.059-0.101*0.014
种仁含油率 Seed kernel oil content-0.284**0.256**-0.074-0.219**0.0740.138**
油酸含量 Oleic acid content0.035-0.048-0.099*0.0800.0590.079
亚油酸含量 Linoleic acid content0.037-0.094*0.392**-0.093*-0.298**-0.359**
亚麻酸含量 Linolenic acid content-0.106*0.0090.267**-0.178**-0.287**-0.125**
硬脂酸含量 Stearic acid content-0.100*0.181**-0.253**00.266**0.274**
棕榈酸含量 Palmitic acid content-0.0780.159**-0.285**-0.0040.243**0.277**
饱和脂肪酸含量 Saturated fatty acid content-0.112**0.219**-0.361**-0.0030.330**0.363**
不饱和脂肪酸含量 Unsaturated fatty acid content0.087*-0.174**0.395**-0.033-0.322**-0.370**
Table 5 Correlation analysis between environmental factors and 13 quantitative traits of C. oleifera excellent germplasm resources
[1]   QUAN W X, WANG A P, GAO C, et al. Applications of Chinese Camellia oleifera and its by-products: a review[J]. Frontiers in Chemistry, 2022, 10: 921246. DOI: 10.3389/fchem.2022.921246
doi: 10.3389/fchem.2022.921246
[2]   秦声远,戎俊,张文驹,等.油茶栽培历史与长江流域油茶遗传资源[J].生物多样性,2018,26(4):384-395. DOI:10.17520/biods.2017254
QIN S Y, RONG J, ZHANG W J, et al. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin[J]. Biodiversity Science, 2018, 26(4): 384-395. (in Chinese with English abstract)
doi: 10.17520/biods.2017254
[3]   ZHANG F, ZHU F, CHEN B L, et al. Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: a review[J]. Food Research International, 2022, 156: 111159. DOI: 10.1016/j.foodres.2022.111159
doi: 10.1016/j.foodres.2022.111159
[4]   谭晓风.油茶分子育种研究进展[J].中南林业科技大学学报,2023,43(1):1-24. DOI:10.14067/j.cnki.1673-923x.2023.01.001
TAN X F. Advances in the molecular breeding of Camellia oleifera [J]. Journal of Central South University of Forestry & Technology, 2023, 43(1): 1-24. (in Chinese with English abstract)
doi: 10.14067/j.cnki.1673-923x.2023.01.001
[5]   LIN P, YIN H F, YAN C, et al. Association genetics identifies single nucleotide polymorphisms related to kernel oil content and quality in Camellia oleifera [J]. Journal of Agricultural and Food Chemistry, 2019, 67(9): 2547-2562. DOI: 10.1021/acs.jafc.8b03399
doi: 10.1021/acs.jafc.8b03399
[6]   LUAN F, ZENG J S, YANG Y, et al. Recent advances in Camellia oleifera Abel: a review of nutritional constituents, biofunctional properties, and potential industrial applications[J]. Journal of Functional Foods, 2020, 75: 104242. DOI: 10.1016/j.jff.2020.104242
doi: 10.1016/j.jff.2020.104242
[7]   孔庆博,姜惠,郭春雨,等.油茶主要化学成分及药理活性研究进展[J].中国粮油学报,2022,37(4):194-202. DOI:10.3969/j.issn.1003-0174.2022.04.029
KONG Q B, JIANG H, GUO C Y, et al. Research progress on main chemical constituents and pharmacological activities of Camellia oleifera [J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(4): 194-202. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0174.2022.04.029
[8]   GAO J, MA L, MA J, et al. Camellia (Camellia oleifera Abel.) seed oil regulating of metabolic phenotype and alleviates dyslipidemia in high fat-fed mice through serum branch-chain amino acids[J]. Nutrients, 2022, 14(12): 2424. DOI: 10.3390/nu14122424
doi: 10.3390/nu14122424
[9]   杨嵘,邱赛红,杨蓉,等.油茶籽的食用和药用价值研究进展[J].世界科学技术—中医药现代化,2019,21(12):2770-2774. DOI:10.11842/wst.20190311001
YANG R, QIU S H, YANG R, et al. Research progress of edible and medicinal value of Camellia oleifera seeds[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2019, 21(12): 2770-2774. (in Chinese with English abstract)
doi: 10.11842/wst.20190311001
[10]   YE C R, HE Z L, PENG J Y, et al. Genomic and genetic advances of oiltea—camellia (Camellia oleifera)[J]. Frontiers in Plant Science, 2023, 14: 1101766. DOI: 10.3389/fpls.2023.1101766
doi: 10.3389/fpls.2023.1101766
[11]   陈永忠.我国油茶科技进展与未来核心技术[J].中南林业科技大学学报,2023,43(7):1-22. DOI:10.14067/j.cnki.1673-923x.2023.07.001
CHEN Y Z. Scientific and technological progress and future core technologies of oil tea Camellia in China[J]. Journal of Central South University of Forestry & Technology, 2023, 43(7): 1-22. (in Chinese with English abstract)
doi: 10.14067/j.cnki.1673-923x.2023.07.001
[12]   陈丰林,谢海,游昌乔,等.我国油茶资源研究与开发利用现状及展望[J].生命科学研究,2021,25(5):425-431. DOI:10.16605/j.cnki.1007-7847.2021.08.0205
CHEN F L, XIE H, YOU C Q, et al. Current situation and prospect of research, development and utilization of Camellia oleifera resources in China[J]. Life Science Research, 2021, 25(5): 425-431. (in Chinese with English abstract)
doi: 10.16605/j.cnki.1007-7847.2021.08.0205
[13]   陈永忠.油茶优良种质资源[M].北京:中国林业出版社,2008.
CHEN Y Z. Oil Tea Camellia Superior Germplasm Resources[M]. Beijing: China Forestry Publishing House, 2008. (in Chinese)
[14]   国家林业局国有林场和林木种苗工作总站.中国油茶品种志[M].北京:中国林业出版社,2016.
State Forestry Administration. General Station for State-owned Forest Farms and Forest Tree Seedling Work. Oil-tea Camellia Cultivars in China [M]. Beijing: China Forestry Publishing House, 2016. (in Chinese)
[15]   姚小华,任华东.中国油茶遗传资源[M].北京:科学出版社,2020.
YAO X H, REN H D. Oil-tea Camellia Genetic Resource in China [M]. Beijing: Science Press, 2020. (in Chinese)
[16]   谭晓风,袁军,刘繁灯.油茶栽培品种应用技术[M].北京:中国林业出版社,2020.
TAN X F, YUAN J, LIU F D. Oil-tea Camellia Cultivars Application Technology [M]. Beijing: China Forestry Publishing House, 2020. (in Chinese)
[17]   龚守富,朱赞彬.6个油茶果实经济性状及茶油品质比较分析[J].森林工程,2022,38(3):40-46. DOI:10.16270/j.cnki.slgc.2022.03.003
GONG S F, ZHU Z B. Comparative analysis of economic characters and tea oil quality of six Camellia oleifera varieties[J]. Forest Engineering, 2022, 38(3): 40-46. (in Chinese with English abstract)
doi: 10.16270/j.cnki.slgc.2022.03.003
[18]   杨雨晨,陈娟娟,姚小华,等.50个普通油茶果实性状综合评价[J].中国粮油学报,2022,37(12):175-182. DOI:10.20048/j.cnki.issn.1003-0174.000491
YANG Y C, CHEN J J, YAO X H, et al. Comprehensive evaluation of fruit quality of 50 varieties of Camellia oleifera [J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(12): 175-182. (in Chinese with English abstract)
doi: 10.20048/j.cnki.issn.1003-0174.000491
[19]   崔相艳,王文娟,杨小强,等.基于生态位模型预测野生油茶的潜在分布[J].生物多样性,2016,24(10):1117-1128. DOI:10.17520/biods.2016164
CUI X Y, WANG W J, YANG X Q, et al. Potential distribution of wild Camellia oleifera based on ecological niche modeling[J]. Biodiversity Science, 2016, 24(10): 1117-1128. (in Chinese with English abstract)
doi: 10.17520/biods.2016164
[20]   吴昊,苏万龙,石美娟,等.枣种质果实性状多样性分析与综合评价[J].植物遗传资源学报,2022,23(6):1613-1625. DOI:10.13430/j.cnki.jpgr.20220417001
WU H, SU W L, SHI M J, et al. Diversity analysis and comprehensive evaluation of jujube fruit traits[J]. Journal of Plant Genetic Resources, 2022, 23(6): 1613-1625. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.20220417001
[21]   刘艺平,吴芳芳,贺丹,等.基于花色表型的荷花品种数量分类[J].浙江大学学报(农业与生命科学版),2020,46(3):319-326. DOI:10.3785/j.issn.1008-9209.2019.07.151
LIU Y P, WU F F, HE D, et al. Numerical classification of lotus cultivars based on flower color phenotype[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 319-326. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.07.151
[22]   李赢,刘海翠,石晓旭,等.398份裸大麦种质资源表型性状遗传多样性分析[J].植物遗传资源学报,2023,24(5):1311-1320. DOI:10.13430/j.cnki.jpgr.20230301002
LI Y, LIU H C, SHI X X, et al. Phenotypic diversity analysis of 398 naked barley germplasm resources[J]. Journal of Plant Genetic Resources, 2023, 24(5): 1311-1320. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.20230301002
[23]   郑福顺,王晓敏,李国花,等.基于表型性状的宁夏番茄种质资源核心种质构建[J].浙江大学学报(农业与生命科学版),2021,47(2):171-181. DOI:10.3785/j.issn.1008-9209.2020.08.141
ZHENG F S, WANG X M, LI G H, et al. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 171-181. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2020.08.141
[24]   CHEN T, LIU L, ZHOU Y L, et al. Characterization and comprehensive evaluation of phenotypic characters in wild Camellia oleifera germplasm for conservation and breeding[J]. Frontiers in Plant Science, 2023, 14: 1052890. DOI: 10.3389/fpls.2023.1052890
doi: 10.3389/fpls.2023.1052890
[25]   郭书娟,许亚东,黄进勇.基于熵权TOPSIS模型的农业绿色发展水平评价:以河南省为例[J].浙江大学学报(农业与生命科学版),2023.
GUO S J, XU Y D, HUANG J Y. Evaluation of agricultural green development level based on entropy-weighted TOPSIS model: a case study of Henan Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023. (in Chinese with English abstract)
[26]   葛颂,王明庥,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学,1988,24,(4):399-409.
GE S, WANG M X, CHEN Y W. Study on genetic structure of masson pine population by isozyme technique[J]. Scientia Silvae Sinicae, 1988, 24(4): 399-409. (in Chinese)
[27]   江锡兵,龚榜初,刘庆忠,等.中国板栗地方品种重要农艺性状的表型多样性[J].园艺学报,2014,41(4):641-652. DOI:10.16420/j.issn.0513-353x.2014.04.008
JIANG X B, GONG B C, LIU Q Z, et al. Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut[J]. Acta Horticulturae Sinica, 2014, 41(4): 641-652. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2014.04.008
[28]   董胜君,王若溪,张皓凯,等.不同种源东北杏果实表型性状多样性分析[J].植物资源与环境学报,2020,29(6):42-50. DOI:10.3969/j.issn.1674-7895.2020.06.05
DONG S J, WANG R X, ZHANG H K, et al. Analysis on diversity of fruit phenotypic characters of Armeniaca mandshurica from different provenances[J]. Journal of Plant Resources and Environment, 2020, 29(6): 42-50. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7895.2020.06.05
[29]   ZHANG M, BARG R, YIN M G, et al. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desatu-rases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants[J]. The Plant Journal, 2005, 44(3): 361-371. DOI: 10.1111/j.1365-313X.2005.02536.x
doi: 10.1111/j.1365-313X.2005.02536.x
[1] Shujuan GUO,Yadong XU,Jinyong HUANG. Evaluation of agricultural green development level based on entropy-weighted TOPSIS model: a case study of Henan Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 221-230.
[2] Luoqi WANG,Weijun FU,Zhengqian YE,Shanshan MA,Lizhong DING,Keli ZHAO. Evaluation of soil quality degradation in Chinese hickory production area based on geographic information system and remote sensing technologies[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 216-226.
[3] Fushun ZHENG,Xiaomin WANG,Guohua LI,Honglei LI,Pengze ZHOU,Lin WANG,Shengyi BAI,Peijun LIU,Xueyan ZHANG,Xinhua HU,Jinjun FU,Yanming GAO,Jianshe LI. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 171-181.
[4] ZHANG Xiaowei, GONG Xuemei, LI Lin, ZHOU Zhixiang, LIU Dan. Comprehensive evaluation of the color-leaf plants introduced in Northern Anhui based on analytic hierarchy process[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 580-587.