Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 123-136    DOI: 10.3785/j.issn.1008-9209.2023.03.281
Animal Sciences & Veterinary Medicines     
Characteristics of microbial communities and their association with immunity and metabolism at the early developmental stage of Protosalanx chinensis
Yifan ZHOU1(),Xizhao ZHANG1,2(),Yanfeng ZHOU1,2,Dongpo XU1,2,Chenhe WANG1,Shiyue GUO1,Shulun JIANG2,Yang YOU1,2()
1.Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
2.Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
Download: HTML   HTML (   PDF(3592KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to understand the changes and characteristics of microbial communities during early development of Protosalanx chinensis, samples were collected at five developmental periods, which are the embryonic period (heartbeat stage, XT), the endogenous nutrition period (the first day after hatching, H1), the mixed nutrition period (the fourth day after hatching, H4), the open feeding period (the seventh day after hatching, H7), and the exogenous nutrition period (the tenth day after hatching, H10). Microbial community succession during early development was observed by 16S rRNA gene sequencing technology, especially the characteristics and key microbial genera before and after feeding. Combined with the transcriptome data of the same batch of samples, the microbial genera related to immunity and metabolism were analyzed based on the association network method. The results showed that there were significant differences in β diversity among the different periods at the early developmental stage (P<0.001). The dominant bacteria in the XT period were Flavobacterium and Chryseobacterium, and the dominant bacterium in the H1 period was Pseudomonas. The main bacteria in the H4 period were Flavobacterium and Pseudomonas. The main bacteria in H7 and H10 periods were Flectobacillus and Pseudomonas. The abundance of Pseudomonas was stable at all developmental periods. Node bacteria such as Flectobacillus were significantly associated with the expression of various immune and metabolic genes. This study has obtained the microbial succession information of the early developmental stage of P. chinensis for the first time, and screened out the dominant bacteria and node bacteria, which will provide references and ideas for the scaled cultivation of P. chinensis fry.



Key wordsProtosalanx chinensis      early development      microbiota      16S rRNA      transcriptome     
Received: 28 March 2023      Published: 01 March 2024
CLC:  S917.4  
Corresponding Authors: Xizhao ZHANG,Yang YOU     E-mail: 18203889079@163.com;zhangxizhao@ffrc.cn;youy@ffrc.cn
Cite this article:

Yifan ZHOU,Xizhao ZHANG,Yanfeng ZHOU,Dongpo XU,Chenhe WANG,Shiyue GUO,Shulun JIANG,Yang YOU. Characteristics of microbial communities and their association with immunity and metabolism at the early developmental stage of Protosalanx chinensis. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 123-136.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.03.281     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/123


大银鱼早期发育阶段微生物群落特征及其与免疫和代谢的关联

为了解大银鱼早期发育过程中的微生物群落变化规律与特征,采集大银鱼胚胎期(心跳期,XT)、内源性营养期(采样时间为孵化后第1天,记为H1)、混合性营养期(孵化后第4天,H4)、开口摄食期(孵化后第7天,H7)和外源性营养期(孵化后第10天,H10)5个发育时期的样本。通过16S rRNA基因测序技术观察大银鱼早期发育过程中的微生物群落演替,尤其是摄食前后的微生物群落特征和关键菌属;并结合同批次样品的转录组数据,基于关联网络方法重点分析了与免疫和代谢相关的菌属。结果显示:大银鱼早期发育阶段各时期的β多样性存在显著差异(P<0.001),其中,XT的优势菌群为黄杆菌属(Flavobacterium)和金黄杆菌属(Chryseobacterium);胚后H1时期的优势菌群为假单胞菌属(Pseudomonas);H4时期的主要菌群为黄杆菌属和假单胞菌属;H7和H10时期的主要菌群为弯曲杆菌属(Flectobacillus)和假单胞菌属。假单胞菌属在各时期中稳定存在。与多种免疫和代谢基因表达显著相关的是弯曲杆菌属等节点菌属。本研究首次获得了大银鱼早期发育阶段的微生物演替信息,同时,筛选到的优势菌属与节点菌属将为大银鱼苗种的规模化培育提供思路和参考。


关键词: 大银鱼,  早期发育,  微生物,  16S rRNA,  转录组 
时期 Period

采样时间

Sampling time

肠道内食物

Intestinal food

卵黄囊

Yolk sac

XT心跳期
H1孵化后第1天约占鱼体积的3/4
H4孵化后第4天零星出现约占鱼体积的1/2
H7孵化后第7天轮虫约占鱼体积的1/4
H10孵化后第10天轮虫及桡足类卵黄囊消失
Table 1 Details of samples
Fig. 1 Schematic diagrams of five periods at the early developmental stage of P. chinensis
Fig. 2 α and β diversity analyses of microbial communities of five periodsA. Box plots of α diversity analysis (the Kruskal-Wallis method was used to test the significant differences between periods); B. β diversity analysis of NMDS based on Bray-Curtis distance.
Fig. 3 Microbial compositions of five periods (phylum level)1-3 represent three replicate samples under the same period. The same as Fig. 4.
Fig. 4 Microbial compositions of five periods (genus level)
Fig. 5 KEGG functional analysis of microbial communities of five periodsEach heat map represents a KEGG pathway secondary classification. Each color block represents the mean value of functional abundance of each period and is centered and scaled by row. Red represents a high abundance, and blue represents a low abundance.
Fig. 6 Microbial association networks of five periodsA. Microbial modular networks (each node represents an ASV, and the node size represents the average relative abundance of ASV. The red line segment indicates a negative correlation between the nodes, and the blue line segment indicates a positive correlation between the nodes); B. Analysis for Hub nodes of the modular network (the higher the Hub score, the higher the degree of association with other nodes).
Fig. 7 KEGG annotation and classification results of genes in microbial communities of five periods
Fig. 8 Association networks of microbial community and immune pathway related genesEach node represents an ASV or a gene, and the node’s size represents the igraph degree. Node label indicates the genus name to which the ASV belongs. The red line segment indicates a negative correlation between the nodes, and the blue line segment indicates a positive correlation between the nodes.
Fig. 9 Association networks of microbial community and metabolic pathway related genesA. Venn diagram about genes belonging to carbohydrate metabolism, amino acid metabolism, and lipid metabolism; B. Association network of microbial community and metabolic pathway related genes (each node represents an ASV or a gene, and the node’s size represents the igraph degree. Node label indicates genus name or gene name. The red line segment indicates a negative correlation between the nodes, and the blue line segment indicates a positive correlation between the nodes); C. Heat map of ASV nodes with igraph degree greater than 5; D. Heat map for gene nodes with igraph degree greater than 5. ANPR: Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium.
[1]   唐富江,高文燕,李慧琴,等.大银鱼生物学与渔业生态学研究进展[J].水产学报,2020,44(12):2100-2111. DOI:10.11964/jfc.20200312210
TANG F J, GAO W Y, LI H Q, et al. Biology and fishery ecology of Protosalanx chinensis: a review[J]. Journal of Fisheries of China, 2020, 44(12): 2100-2111. (in Chinese with English abstract)
doi: 10.11964/jfc.20200312210
[2]   薛以平,吴建广.水库大银鱼种群变动规律及增殖利用初步研究[J].水产养殖,2004(3):37-40. DOI:10.3969/j.issn.1004-2091.2004.03.018
XUE Y P, WU J G. Preliminary study on variation pattern of Protosalanx chinensis population and its proliferation and utilization[J]. Journal of Aquaculture, 2004, 25(3): 37-40. (in Chinese)
doi: 10.3969/j.issn.1004-2091.2004.03.018
[3]   CHEN T G, WANG Y, GARDNER C, et al. Threats and protection policies of the aquatic biodiversity in the Yangtze River[J]. Journal for Nature Conservation, 2020, 58: 125931. DOI: 10.1016/j.jnc.2020.125931
doi: 10.1016/j.jnc.2020.125931
[4]   王煜恒,陈军,李华.大银鱼仔鱼的人工培育技术探究[J].南方农业,2021,15(29):178-179. DOI:10.19415/j.cnki.1673-890x.2021.29.080
WANG Y H, CHEN J, LI H. Research on artificial breeding technology of Protosalanx chinensis larvae[J]. South China Agriculture, 2021, 15(29): 178-179. (in Chinese)
doi: 10.19415/j.cnki.1673-890x.2021.29.080
[5]   ZHANG M L, SHAN C J, TAN F, et al. Gnotobiotic models: powerful tools for deeply understanding intestinal microbiota-host interactions in aquaculture[J]. Aquaculture, 2020, 517: 734800. DOI: 10.1016/j.aquaculture.2019.734800
doi: 10.1016/j.aquaculture.2019.734800
[6]   WILKINS L G E, FUMAGALLI L, WEDEKIND C. Effects of host genetics and environment on egg-associated micro-biotas in brown trout (Salmo trutta)[J]. Molecular Ecology, 2016, 25(19): 4930-4945. DOI: 10.1111/mec.13798
doi: 10.1111/mec.13798
[7]   ZHANG Z, YU Y X, JIANG Y, et al. The intestine of artificially bred larval turbot (Scophthalmus maximus) contains a stable core group of microbiota[J]. Archives of Microbiology, 2020, 202(10): 2619-2628. DOI: 10.1007/s00203-020-01984-y
doi: 10.1007/s00203-020-01984-y
[8]   REKECKI A, DIERCKENS K, LAUREAU S, et al. Effect of germ-free rearing environment on gut development of larval sea bass (Dicentrarchus labrax L.)[J]. Aquaculture, 2009, 293(1/2): 8-15. DOI: 10.1016/j.aquaculture.2009.04.001
doi: 10.1016/j.aquaculture.2009.04.001
[9]   RAWLS J F, SAMUEL B S, GORDON J I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota[J]. PNAS, 2004, 101(13): 4596-4601. DOI: 10.1073/pnas.0400706101
doi: 10.1073/pnas.0400706101
[10]   TANG X M, JIANG S L, WANG H L, et al. Transcriptome sequencing analysis reveals dynamic changes in major bio-logical functions during the early development of clearhead icefish, Protosalanx chinensis [J]. Fishes, 2022, 7(3): 115. DOI: 10.3390/fishes7030115
doi: 10.3390/fishes7030115
[11]   OYARBIDE U, ITURRIA I, RAINIERI S, et al. Use of gnotobiotic zebrafish to study Vibrio anguillarum pathogenicity[J]. Zebrafish, 2015, 12(1): 71-80. DOI: 10.1089/zeb.2014.0972
doi: 10.1089/zeb.2014.0972
[12]   KANTHER M, SUN X L, MÜHLBAUER M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract[J]. Gastroenterology, 2011, 141(1): 197-207. DOI: 10.1053/j.gastro.2011.03.042
doi: 10.1053/j.gastro.2011.03.042
[13]   BOLYEN E, RIDEOUT J R, DILLON M R, et al. Repro-ducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852-857. DOI: 10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9
[14]   马晓娇,薛茗元,孙会增,等.泌乳中期荷斯坦奶牛瘤胃细菌群落组成与多样性变化[J].浙江大学学报(农业与生命科学版),2023,49(4):578-590. DOI:10.3785/j.issn.1008-9209.2022.06.291
MA X J, XUE M Y, SUN H Z, et al. Changes in the com-position and diversity of the rumen bacterial community in mid-lactation Holstein cows[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2023, 49(4): 578-590. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2022.06.291
[15]   CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583. DOI: 10.1038/nmeth.3869
doi: 10.1038/nmeth.3869
[16]   KATOH K, MISAWA K, KUMA K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14): 3059-3066. DOI: 10.1093/nar/gkf436
doi: 10.1093/nar/gkf436
[17]   PRICE M N, DEHAL P S, ARKIN A P. FastTree2—approxi-mately maximum-likelihood trees for large alignments[J]. PLoS ONE, 2010, 5(3): e9490. DOI: 10.1371/journal.pone.0009490
doi: 10.1371/journal.pone.0009490
[18]   BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin[J]. Microbiome, 2018, 6: 90. DOI: 10.1186/s40168-018-0470-z
doi: 10.1186/s40168-018-0470-z
[19]   WEN T, XIE P H, YANG S D, et al. ggClusterNet: an R package for microbiome network analysis and modularity-based multiple network layouts[J]. iMeta, 2022, 1(3): e32. DOI: 10.1002/imt2.32
doi: 10.1002/imt2.32
[20]   CHAUCHEYRAS-DURAND F, DURAND H. Probiotics in animal nutrition and health[J]. Beneficial Microbes, 2010, 1(1): 3-9. DOI: 10.3920/BM2008.1002
doi: 10.3920/BM2008.1002
[21]   PARRIS D J, BROOKER R M, MORGAN M A, et al. Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement[J]. PeerJ, 2016, 4: e2412. DOI: 10.7717/peerj.2412
doi: 10.7717/peerj.2412
[22]   BAKKE I, COWARD E, ANDERSEN T, et al. Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua)[J]. Environmental Microbiology, 2015, 17(10): 3914-3924. DOI: 10.1111/1462-2920.12888
doi: 10.1111/1462-2920.12888
[23]   WANG A R, RAN C, RINGØ E, et al. Progress in fish gastrointestinal microbiota research[J]. Reviews in Aquaculture, 2018, 10(3): 626-640. DOI: 10.1111/raq.12191
doi: 10.1111/raq.12191
[24]   BARNES M E, BROWN M L. A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treat[J]. The Open Fish Science Journal, 2011, 4: 40-48. DOI: 10.2174/1874401X01104010040
doi: 10.2174/1874401X01104010040
[25]   STARLIPER C E. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum [J]. Journal of Advanced Research, 2011, 2(2): 97-108. DOI: 10.1016/j.jare.2010.04.001
doi: 10.1016/j.jare.2010.04.001
[26]   LOCH T P, FAISAL M. Flavobacteria colonizing the early life stages of hatchery-incubated Chinook salmon Oncor-hynchus tshawytscha (Walbaum 1792) are markedly diverse[J]. Journal of Fish Diseases, 2018, 41(5): 829-845. DOI: 10.1111/jfd.12795
doi: 10.1111/jfd.12795
[27]   SATICIOGLU I B, MULET M, DUMAN M, et al. First occurrence and whole-genome comparison of Pseudomonas haemolytica isolated in farmed rainbow trout[J]. Aquaculture Research, 2022, 53(12): 4472-4486. DOI: 10.1111/are.15944
doi: 10.1111/are.15944
[28]   GONZÁLEZ-PALACIOS C, FREGENEDA-GRANDES J M, ALLER-GANCEDO J M. Possible mechanisms of action of two Pseudomonas fluorescens isolates as probiotics on saprolegniosis control in rainbow trout (Oncorhynchus mykiss Walbaum)[J]. Animals, 2020, 10(9): 1507. DOI: 10.3390/ani10091507
doi: 10.3390/ani10091507
[29]   GIRI S S, JUN J W, YUN S, et al. Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio [J]. Aquaculture, 2020, 514: 734489. DOI: 10.1016/j.aquaculture.2019.734489
doi: 10.1016/j.aquaculture.2019.734489
[30]   ROMERO J, NAVARRETE P. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch)[J]. Microbial Ecology, 2006, 51(4): 422-430. DOI: 10.1007/s00248-006-9037-9
doi: 10.1007/s00248-006-9037-9
[31]   NAYAK S K. Role of gastrointestinal microbiota in fish[J]. Aquaculture Research, 2010, 41(11): 1553-1573. DOI: 10.1111/j.1365-2109.2010.02546.x
doi: 10.1111/j.1365-2109.2010.02546.x
[32]   SEPAHI A, CORDERO H, GOLDFINE H, et al. Symbiont-derived sphingolipids modulate mucosal homeostasis and B cells in teleost fish[J]. Scientific Reports, 2016, 6: 39054. DOI: 10.1038/srep39054
doi: 10.1038/srep39054
[33]   ZHANG X L, AKHTAR M, CHEN Y, et al. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation[J]. Microbiome, 2022, 10: 107. DOI: 10.1186/s40168-022-01299-8
doi: 10.1186/s40168-022-01299-8
[34]   STRESSMANN F A, BERNAL-BAYARD J, PEREZ-PASCUAL D, et al. Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection[J]. The ISME Journal, 2021, 15(3): 702-719. DOI: 10.1038/s41396-020-00807-8
doi: 10.1038/s41396-020-00807-8
[1] Hui MA,Haijie MA,Chen JIAO,Hongye LI. Differential transcriptome analysis of different resistant citrus varieties infected with wild-type and toxin synthesis-impaired strains causing Alternaria brown spot[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 787-801.
[2] Siyu YANG,Zihui GONG,Zhongyuan HU,Mingfang ZHANG,Jinghua YANG. Identification of genes in response to cucurbit aphid-borne yellows virus infection in melon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 696-707.
[3] Xuemei TANG,Yanfeng ZHOU,Di’an FANG,Yuting LUO,Minying ZHANG,Shulun JIANG,Xizhao ZHANG,Fei PENG,Yang YOU. Development of whole-genome simple sequence repeat markers in Proto-salanx chinensis and their test in different ecological populations[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 413-423.
[4] Jing JIN,Yiqing Lü,Weizhong HE,Zaifa SHU,Jianhui YE,Yuerong LIANG. Effects of different shade treatments on the biosynthesis of main phytohormones in the leaves of tea plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 45-54.
[5] Bowen QI,Menglan GUO,Hejun LU,Huan MEI,Ting ZHAO,Lei FANG. Identification and comparative analysis of genes in response to cold stress between two mainly cultivated tetraploid cottons[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 10-20.
[6] Yingjie ZHANG,Pengfei XU. Research progress of left-right asymmetry development in vertebrates[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 647-659.
[7] Guohu CHEN,Hao WANG,Guang LI,Xiaoyan TANG,Chenggang WANG,Lei ZHANG,Jinfeng HOU,Lingyun YUAN. Genome-wide identification and bioinformatics analysis of PRX gene family in Brassica rapa[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 677-686.
[8] Yuyan GUO,Lu ZHANG,Xinyu ZHAO,Dongwei HU,Wusheng LIANG. Transcriptomic analysis of the lighting inhibition on growth of Villosiclava virens mycelia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 571-581.
[9] ZHENG Youxiu, WANG Chao, YAO Jingyi, LU Jianjun.

Effects of Clostridium butyricum on serum biochemical indices, antioxidant function and intestinal microbiota in weaned piglets [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 190-198.

[10] LIANG Yanting, LIU Yuncai, GAO Yun, WANG Huabing, XU Yusong. Diversity analysis on gut microbiota of Glyphodes pyloalis Walker under high temperature[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 215-222.
[11] ZHU Jiaying, JI Mei, YANG Bin, ZE Sangzi. Transcriptomic analysis reveals polygalacturonase genes in Pachypeltis micranthus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 24-32.
[12] KANG Yongbo, KONG Xiangyang, ZHANG Xiaofang, GUO Liqiong, SUN Junhong. Progress in research on interaction of intestinal microbiota and immunity[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 282-288.
[13] Bao Linfei, Wang Xinxing, He Jianyu, Fan Meihua, Gao Peng, Liao Zhi. Illumina-based transcriptome sequencing of mussel Mytilus coruscus mantle[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 394-406.
[14] Fang Shu, Dai Chong, Yan Juan. Phylogenetic analysis of strain CHBT-1721 with other thermophile bacteria isolated from hot springs of China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 15-24.
[15] Zhu Qianhao, Danny Llewellyn, Iain Wilson. Use of next-generation sequencing in genomic studies of polyploid crops: Cotton as an example[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 355-369.