Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 413-423    DOI: 10.3785/j.issn.1008-9209.2022.04.191
Animal sciences & veterinary medicines     
Development of whole-genome simple sequence repeat markers in Proto-salanx chinensis and their test in different ecological populations
Xuemei TANG1(),Yanfeng ZHOU1,2,Di’an FANG1,2(),Yuting LUO1,Minying ZHANG2,Shulun JIANG2,Xizhao ZHANG2,Fei PENG1,Yang YOU1,2()
1.Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
2.Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
Download: HTML   HTML (   PDF(2238KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Krait software was used to analyze the distribution characteristics of perfect microsatellites in the whole genome of Protosalanx chinensis, which was published in 2020 with a higher degree of splicing, and to develop polymorphic microsatellite DNA (also known as simple sequence repeat) markers. The results showed that a total of 587 554 perfect microsatellite loci were obtained in the whole genome of P. chinensis, with a total sequence length of 11 803 017 bp, accounting for 2.53% of the whole genome length. Among six repeat types of microsatellites, the number of dinucleotide was the largest (401 585, accounting for 68.35%). In the 99 pairs of primers designed for microsatellite loci, 39 were polymorphic. Among them, 14 microsatellite markers with favorable polymorphism were selected to test one representative population selected from each of the migratory, landlocked, and introduced populations. The results indicated that 14 microsatellite markers with favorable polymorphism could achieve effective amplification in the three representative populations. The genetic diversity and genetic structure of the three populations were analyzed, and it was found that the migratory population (Chongming Island population) had abundant genetic variation (the mean expected heterozygosity is 0.614, and the mean polymorphism information content is 0.576), which could be clustered into a genetic group different from the freshwater populations [including Taihu Lake population (landlocked) and Lianhuan Lake population (introduced)], and there were large genetic distance and extremely high level of genetic differentiation level between them [the genetic differentiation index (Fst) is higher than 0.25, P<0.05]. The genetic variations between the two freshwater populations (Taihu Lake and Lianhuan Lake populations) were relatively scarce and the genetic distance between them was small. Although there was significant genetic differentiation between them, the genetic differentiation level was relatively low (Fst=0.102, P<0.05). These results indicate that the migratory population has potential conservation value of germplasm resource, which provide basis for the development of microsatellite markers and construction of genetic maps, and furthermore provide references for the subsequent evaluation of large-scale population germplasm resources of P. chinensis.



Key wordsProtosalanx chinensis      genome simple sequence repeat      ecological population      genetic differentiation     
Received: 19 April 2022      Published: 25 June 2023
CLC:  S917.4  
Corresponding Authors: Di’an FANG,Yang YOU     E-mail: 15729610929@163.com;fangdian@ffrc.cn;youy@ffrc.cn
Cite this article:

Xuemei TANG,Yanfeng ZHOU,Di’an FANG,Yuting LUO,Minying ZHANG,Shulun JIANG,Xizhao ZHANG,Fei PENG,Yang YOU. Development of whole-genome simple sequence repeat markers in Proto-salanx chinensis and their test in different ecological populations. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 413-423.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.04.191     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/413


大银鱼全基因组简单重复序列标记开发及在不同生态型群体中的检验

利用Krait软件对2020年公布的拼接程度更高的大银鱼全基因组中完美型微卫星的分布特征进行分析,并据此开发具有多态性的微卫星DNA(又称简单重复序列)标记。结果显示:在大银鱼全基因组内共获得587 554个完美型微卫星位点,序列总长度为11 803 017 bp,占全基因组长度的2.53%;在6种重复类型的微卫星中,二核苷酸数量最多(401 585个,占比68.35%)。针对微卫星位点设计的99对引物中,有39对具有多态性,选择其中多态性较好的14个微卫星标记分别对大银鱼洄游型群体、陆封型群体及移植型群体中选择的1个具有代表性的群体进行检验,结果表明,多态性较好的14个微卫星标记在3个具有代表性的群体中均能进行有效扩增。对3个群体的遗传多样性和遗传结构进行分析发现,洄游型群体(崇明岛群体)遗传变异丰富(平均期望杂合度为0.614、平均多态信息含量为0.576),与淡水群体[太湖群体(陆封型)和连环湖群体(移植型)]分属于2个不同的遗传群组,两者间具有较大的遗传距离和极高的遗传分化水平(遗传分化指数高于0.25,P<0.05);淡水群体(太湖和连环湖群体)的遗传变异相对匮乏,2个群体间的遗传距离较小,虽存在显著的遗传分化,但遗传分化水平较低(遗传分化指数为0.102,P<0.05)。本研究结果表明,洄游型群体具有潜在的种质资源保护价值,可为后续大银鱼全基因组微卫星标记开发和遗传图谱构建等提供依据,并为后续更大范围的群体种质资源评估与管理提供参考。


关键词: 大银鱼,  基因组简单重复序列,  生态型群体,  遗传分化 

采样点

Sampling site

经纬度

Latitude-longitude

采样年份

Sampling

year

样品数

Sample number

群体类型

Population type

长江崇明岛水域 Chongming Island waters of Yangtze River31.729 9° N, 120.207 4° E201816洄游型 Migratory
太湖 Taihu Lake31.151 9° N, 120.198 2° E202020陆封型 Landlocked
连环湖(龙虎泡) Lianhuan Lake (Longhupao)46.707 8° N,124.379 9° E201920移植型 Introduced
Table 1 Details for the samples of P. chinensis

微卫星位点

Microsatellite locus

引物序列(5→3

Primer sequence (5→3)

重复基序及数量

Repeat motif and number

产物长度

Product length/bp

退火温度

Annealing temperature/℃

SSR03F: GGCTATTCTGCTCACTCTGCA/TG(10)24554
R: TTGACTAACCTGCTCTACTG
SSR07F: GCATCATCATCCTCTTCATCAAT/AT(11)23756
R: CACAGAACGCTTGTCCAC
SSR10F: GCTCAGACAACTCAGGTTCG/CG(14)21460
R: CACAGCCTTAGAACATTCG
SSR11F: CCAGCCTCAATAACATTCAAAAC/GTT(5)17856
R: TTGCGTGGAACTTCTTGA
SSR22F: TATAACCTGCTGTGCTTCATAAC/GTT(9)13356
R: GAGTCCTTCTGGAACTAACC
SSR30F: CCTCCTCCTTCACATCCTTTC/GAA(5)12960
R: AGCGTGTTCAACATCATCT
SSR35F: CATGTCATCAGCAATCAGAGTCC/GGA(9)12560
R: CAGAGGAGCCATTAAGAAGA
SSR45F: GAGGAAGAGCCGTGATTGTAA/TTA(6)16556
R: AGCGACTTTGAATACCTTGA
SSR48F: TTCCTTTGCTTCCCATCGATT/AAT(5)19860
R: GCCACTTGTTCGTATTCATT
SSR74F: ACTCACCCAATGTTGAAGGTGC/GCA(5)28056
R: CAATCCAAGAATACTCAGTACC
SSR84F: AGGATTAGGTTGCTGTTGAGGCT/AGC(5)15156
R: TGAACTGCCTCTGCTGAT
SSR90F: CTGAGGAATGAGACCAAGGGATA/TATC(10)17256
R: GTTAGGAGTTGCATGAAGTG
SSR98F: CAGGAAGCGAACGATACAATTG/CAA(7)22360
R: GGCTCGGATGTCATAGAAC
SSR99F: GTCTGATTCTGAAGTGAACTCTGT/ACA(10)22556
R: TGACTACACAGCCTCTCC
Table 2 Information of 14 pairs of polymorphic microsatellite primers from P. chinensis

重复类型

Repeat type

数量

Number

数量占比

Proportion of

number/%

长度

Length/bp

长度占比

Proportion

of length/%

平均长度

Average

length/bp

相对丰度/

(位点/Mb)

Relative

abundance/

(loci/Mb)

相对密度

Relative

density/

(bp/Mb)

覆盖度

Coverage/%

总计 Total587 554100.0011 803 017100.0020.091 320.7226 531.162.53
单核苷酸 Mononucleotide109 78518.682 640 95422.3724.06246.785 936.410.57
二核苷酸 Dinucleotide401 58568.357 729 25865.4919.25902.6917 374.051.66
三核苷酸 Trinucleotide22 7353.87420 1143.5618.4851.10944.340.09
四核苷酸 Tetranucleotide49 0508.35906 7727.6818.49110.262 038.270.19
五核苷酸 Pentanucleotide2 8190.4861 0450.5221.656.34137.220.01
六核苷酸 Hexanucleotide1 5800.2744 8740.3828.403.55100.870.01
Table 3 Distribution information of perfect microsatellite loci in the whole genome of P. chinensis

重复类型

Repeat type

重复基序

Repeat motif

数量

Number

频率

Frequency/%

单核苷酸 MononucleotideC/G98 06789.33
A/T11 71810.67
二核苷酸 DinucleotideAC/GT249 86062.25
AG/CT144 16935.92
三核苷酸 TrinucleotideAGG/CCT11 49450.56
AAT/ATT3 32114.61
AAC/GTT2 50811.03
四核苷酸 TetranucleotideAGGG/CCCT25 25951.50
ACAG/CTGT10 49321.39
五核苷酸 PentanucleotideAATCT/AGATT56620.08
AGAGG/CCTCT52118.48
AGGGG/CCCCT41714.79
六核苷酸 HexanucleotideAGAGGG/CCCTCT25015.82
AACCCT/AGGGTT23414.81
ACAGAG/CTCTGT20512.97
AATCAG/CTGATT16910.70
Table 4 Distribution of the main repeat motifs in microsatellite of each repeat type in P. chinensis
Fig. 1 Copy number distribution characteristics of microsatellite of each repeat type in the whole genome of P. chinensis
Fig. 2 Partial results of capillary electrophoresis genotyping of microsatellite locus SSR90ar: Area of the peak; ht: Height of the peak; sz: Size of PCR product strip.

微卫星位点

Microsatellite

locus

崇明岛群体

Chongming Island population

太湖群体

Taihu Lake population

连环湖群体

Lianhuan Lake population

NaNeHoHePICNaNeHoHePICNaNeHoHePIC
平均值 Mean3.7060.2570.6140.5762.2570.2570.3180.2991.8970.2420.2860.270
SSR31712.8000.6880.9220.91751.5360.4000.3490.33421.2800.2500.2190.195
SSR784.9230.4380.7970.76864.0610.5500.7540.721*65.3690.3500.8140.788
SSR1052.9600.1250.6620.615*31.1640.0500.1410.13631.1640.0500.1410.136
SSR1121.9230.0000.4800.36521.1050.1000.0950.09021.1050.1000.0950.090
SSR2251.6050.2500.3770.36174.2550.6000.7650.72984.5200.8000.7790.752
SSR3041.8060.0000.4460.42021.2200.2000.1800.16421.0510.0500.0490.048
SSR3563.1800.5630.6860.65131.1070.1000.0960.09431.6990.3500.4110.345
SSR45114.9230.3750.7970.77721.1050.1000.0950.09021.1610.1500.1390.129
SSR4841.6410.0000.3910.36921.0510.0500.0490.04831.2250.2000.1840.174
SSR7442.4040.0630.5840.496*21.3420.2000.2550.22221.2200.2000.1800.164
SSR8431.3730.0630.2710.24821.0510.0500.0490.04811.0000.0000.0000.000
SSR9095.6890.3750.8240.805149.3020.5000.8930.88393.4380.6840.7090.687*
SSR9852.4500.1880.5920.55141.2940.1000.2280.21731.1640.0500.1410.136
SSR9964.2060.4670.7620.72532.0050.6000.5010.41631.1640.1500.1410.136
Table 5 Genetic diversity detection results of 14 polymorphic microsatellite loci in three ecological populations of P. chinensis
Table 6 Genetic distances and genetic differentiation indexes of three ecologicalpopulations of P. chinensis
Fig. 3 Relationship between the optimal number of subpopu-lation (K) and the ΔK (A) and cluster analysis at K=2 by Structure software (B)
Fig. 4 NJ phylogenetic tree (A) and principal coordinate analysis (PCoA) (B) of 56 individuals of P. chinensis based on 14 microsatellite markers
[5]   张颖.大银鱼遗传多样性的研究[D].天津:天津师范大学,2005.
ZHANG Y. The study on the genetic diversity of P . hyalocranius[D]. Tianjin: Tianjin Normal University, 2005. (in Chinese with English abstract)
[6]   WAN Q H, WU H, FUJIHARA T, et al. Which genetic marker for which conservation genetics issue?[J]. Electrophoresis, 2004, 25(14): 2165-2176. DOI: 10.1002/elps.200305922
doi: 10.1002/elps.200305922
[7]   MOJEKWU T O, ANUMUDU C I. Microsatellite markers in aquaculture: application in fish population genetics[J]. IOSR Journal of Environmental Science Toxicology and Food Technology, 2020, 5(4): 43-48. DOI: 10.9790/2402-0544348
doi: 10.9790/2402-0544348
[8]   黄纬杰,郭向召,张子豪,等.草鱼全基因组微卫星特征分析与亲子鉴定[J].水产学报,2022,46(2):161-172. DOI:10.11964/jfc.20201112489
HUANG W J, GUO X Z, ZHANG Z H, et al. Analysis of microsatellite in the entire grass carp (Ctenopharyngodon idella) genome and the application in parentage identification[J]. Journal of Fisheries of China, 2022, 46(2): 161-172. (in Chinese with English abstract)
doi: 10.11964/jfc.20201112489
[9]   LEI Y, ZHOU Y, PRICE M, et al. Genome-wide charac-terization of microsatellite DNA in fishes: survey and analysis of their abundance and frequency in genome-specific regions[J]. BMC Genomics, 2021, 22: 421. DOI: 10.1186/s12864-021-07752-6
doi: 10.1186/s12864-021-07752-6
[10]   LIU K, XU D P, LI J, et al. Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius [J]. GigaScience, 2017, 6(4): giw012. DOI: 10.1093/gigascience/giw012
doi: 10.1093/gigascience/giw012
[11]   ZHANG J, QI J W, SHI F L, et al. Insights into the evolution of neoteny from the genome of the Asian icefish Protosalanx chinensis [J]. iScience, 2020, 23(7): 101267. DOI: 10.1016/j.isci.2020.101267
doi: 10.1016/j.isci.2020.101267
[12]   唐富江,李喆,李培伦.大银鱼资源、生态与渔业技术[M].黑龙江,哈尔滨:黑龙江科学技术出版社,2021:23-29.
TANG F J, LI Z, LI P L. Resource, Ecology and Fishery Technology of Protosalanx chinensis[M]. Harbin, Heilongjiang: Heilongjiang Science and Technology Press, 2021: 23-29. (in Chinese)
[13]   赵亮,高贵珍,张兴桃.利用磁珠富集法筛选大银鱼微卫星标记的初步研究[J].宿州学院学报,2010,25(11):24-26, 53. DOI:10.3969/j.issn.1673-2006.2010.11.009
doi: 10.3969/j.issn.1673-2006.2010.11.009
[1]   薛丹.基于细胞色素b的中国9个大银鱼群体遗传多样性研究[D].广东,广州:暨南大学,2015.
XUE D. Genetic diversity of nine populations of Protosalanx hyalocranius in China based on Cytb sequences[D]. Guangzhou, Guangdong: Jinan University, 2015. (in Chinese with English abstract)
[2]   BALAKIREV E S. Recombinant mitochondrial genomes reveal recent interspecific hybridization between invasive salangid fishes[J]. Life, 2022, 12(5): 661. DOI: 10.3390/life12050661
doi: 10.3390/life12050661
[3]   李大命,唐晟凯,刘燕山,等.基于Cytb基因的江苏省大银鱼种群遗传多样性和遗传结构分析[J].上海海洋大学学报,2021,30(3):416-425. DOI:10.12024/jsou.20190702720
LI D M, TANG S K, LIU Y S, et al. Genetic diversity and population structure of Protosalanx hyalocranius in Jiangsu Province based on Cytb gene sequences[J]. Journal of Shanghai Ocean University, 2021, 30(3): 416-425. (in Chinese with English abstract)
doi: 10.12024/jsou.20190702720
[4]   鲁翠云,陈昕,那荣滨,等.用Cyt b基因分析松嫩平原区湖泊水库大银鱼的遗传多样性[J].水产学杂志,2020,33(5):1-6. DOI:10.3969/j.issn.1005-3832.2020.05.001
LU C Y, CHEN X, NA R B, et al. Genetic diversity of clearhead icefish (Protosalanx hyalocranius) in lakes and reservoirs of Songnen Plain by Cyt b gene[J]. Chinese Journal of Fisheries, 2020, 33(5): 1-6. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-3832.2020.05.001
[13]   ZHAO L, GAO G Z, ZHANG X T. Isolation of micro-satellite loci using magnetic-bead enrichment protocol in Protosalanx hyalocranius [J]. Journal of Suzhou University, 2010, 25(11): 24-26, 53. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-2006.2010.11.009
[14]   DU L M, ZHANG C, LIU Q, et al. Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design[J]. Bioinformatics, 2018, 34(4): 681-683. DOI: 10.1093/bioinformatics/btx665
doi: 10.1093/bioinformatics/btx665
[15]   PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update[J]. Bioinformatics, 2012, 28(19): 2537-2539. DOI: 10.1093/bioinformatics/bts460
doi: 10.1093/bioinformatics/bts460
[16]   KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2007, 16(5): 1099-1106. DOI: 10.1111/j.1365-294X.2007.03089.x
doi: 10.1111/j.1365-294X.2007.03089.x
[17]   NEI M, TAJIMA F, TATENO Y. Accuracy of estimated phylogenetic trees from molecular data[J]. Journal of Molecular Evolution, 1983, 19(2): 153-170.
[18]   EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567. DOI: 10.1111/j.1755-0998.2010.02847.x
doi: 10.1111/j.1755-0998.2010.02847.x
[19]   WRIGHT S. Evolution and the Genetics of Population. Vol. 4: Variability Within and Among Natural Populations[M]. Chicago, USA: The University of Chicago Press, 1978.
[20]   HUBISZ M J, FALUSH D, STEPHENS M, et al. Inferring weak population structure with the assistance of sample group information[J]. Molecular Ecology Resources, 2009, 9(5): 1322-1332. DOI: 10.1111/j.1755-0998.2009.02591.x
doi: 10.1111/j.1755-0998.2009.02591.x
[21]   MALHOTRA E V, JAIN R, BANSAL S, et al. Development of a new set of genic SSR markers in the genus Gentiana: in silico mining, characterization and validation[J]. 3 Biotech, 2021, 11(10): 430. DOI: 10.1007/s13205-021-02969-4
doi: 10.1007/s13205-021-02969-4
[22]   DEWOODY J A, AVISE J C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals[J]. Journal of Fish Biology, 2000, 56(3): 461-473. DOI: 10.1111/j.1095-8649.2000.tb00748.x
doi: 10.1111/j.1095-8649.2000.tb00748.x
[23]   SANDLUND O T, KARLSSON S, THORSTAD E B, et al. Spatial and temporal genetic structure of a river-resident Atlantic salmon (Salmo salar) after millennia of isolation[J]. Ecology and Evolution, 2014, 4(9): 1538-1554. DOI: 10.1002/ece3.1040
doi: 10.1002/ece3.1040
[24]   BRACKEN F S A, HOELZEL A R, HUME J B, et al. Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal and anthropogenic barriers to movement[J]. Molecular Ecology, 2015, 24(6): 1188-1204. DOI: 10.1111/mec.13112
doi: 10.1111/mec.13112
[25]   ÖSTERGREN J, NILSSON J. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.)[J]. Ecology of Freshwater Fish, 2012, 21(1): 119-133. DOI: 10.1111/j.1600-0633.2011.00529.x
doi: 10.1111/j.1600-0633.2011.00529.x
[26]   CUNHA-MACHADO A S, FARIAS I P, HRBEK T, et al. Genetic differentiation and gene flow of the Amazonian catfish Pseudoplatystoma punctifer across the Madeira River rapids prior to the construction of hydroelectric dams[J]. Hydrobiologia, 2022, 849(1): 29-46. DOI: 10.1007/s10750-021-04705-8
doi: 10.1007/s10750-021-04705-8
[27]   刘红艳,李存耀,熊飞.入侵地和原产地太湖新银鱼群体遗传结构[J].水产学报,2016,40(10):1521-1530. DOI:10.11964/jfc.20151010099
LIU H Y, LI C Y, XIONG F. Population genetic structure of Neosalanx taihuensis between invasive and original areas revealed by microsatellite DNA[J]. Journal of Fisheries of China, 2016, 40(10): 1521-1530. (in Chinese with English abstract)
doi: 10.11964/jfc.20151010099
[28]   PRÆBEL K, WESTGAARD J I, FEVOLDEN S E, et al. Circumpolar genetic population structure of capelin Mallotus villosus [J]. Marine Ecology Progress Series, 2008, 360: 189-199. DOI: 10.3354/meps07363
doi: 10.3354/meps07363
[29]   SEMENOVA A V, STROGANOV A N, PONOMAREVA E V, et al. Large-scale genetic structure and diversity of Arctic rainbow smelt Osmerus dentex Steindachner et Kner, 1870 throughout its distributional range based on microsatellites[J]. Polar Biology, 2021, 44(5): 927-940. DOI: 10.1007/s00300-021-02848-x
doi: 10.1007/s00300-021-02848-x
No related articles found!