Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 12-24    DOI: 10.3785/j.issn.1008-9209.2023.03.241
Reviews     
Advances in studies on sugar transporters in ornamental plants
Ziyang HUANG1(),Jie LIU1,Jie KANG1,Ziming REN1,Qi CUI1,Dongze LI1,Yiping XIA2,Si MA3,Yun WU1()
1.Laboratory of Flower Bulbs, Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
2.Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.College of Horticulture, China Agricultural University, Beijing 100193, China
Download: HTML   HTML (   PDF(4869KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Ornamental plants are widely used for beautifying the living environment because of their good ornamental value of flowers, leaves and fruits. Sugar transporters play critical roles in the growth and development, flowering and fruiting, and response to stress of ornamental plants. Therefore, it is of great significance to study the effects of sugar transporters on ornamental plants. Monosaccharide transporters, sucrose transporters/sucrose carriers and sugars will eventually be exported transporters are three major sugar transporters discovered in plants. The classification and basic characteristics of these sugar transporters in different ornamental plants were compared and discussed. We also summarized the function and regulation of these transporters in terms of recent research progress to provide a theoretical basis for the future use of genetic engineering technology to improve ornamental plants and enhance their ornamental and adaptive properties.



Key wordsornamental plants      monosaccharide transporters      sucrose transporters/sucrose carriers      sugars will eventually be exported transporters     
Received: 24 March 2023      Published: 01 March 2024
CLC:  S68  
Corresponding Authors: Yun WU     E-mail: Huangziyang94@163.com;yunwu@zju.edu.cn
Cite this article:

Ziyang HUANG,Jie LIU,Jie KANG,Ziming REN,Qi CUI,Dongze LI,Yiping XIA,Si MA,Yun WU. Advances in studies on sugar transporters in ornamental plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 12-24.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.03.241     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/12


观赏植物糖转运蛋白研究进展

观赏植物因其花、叶、果实等具有良好的观赏价值而在环境美化中得到广泛应用。糖转运蛋白在观赏植物生长发育、开花结实以及逆境胁迫响应等方面发挥重要作用,因此,研究糖转运蛋白对观赏植物产生的影响具重要意义。单糖转运蛋白、蔗糖转运蛋白和糖外排转运蛋白是目前植物中发现的3大类糖转运蛋白。本文对这3类糖转运蛋白成员的分类及基本特性进行了比较和讨论,重点介绍了观赏植物中糖转运蛋白功能和调控的最新研究进展,以期为今后利用基因工程技术改良观赏植物并提高其观赏性及适应性提供理论依据。


关键词: 观赏植物,  单糖转运蛋白,  蔗糖转运蛋白,  糖外排转运蛋白 
Fig. 1 Classification of plant sugar transporters
Fig. 2 Comparison of MSTs subfamily members in representative species
Fig. 3 Comparison of SUTs/SUCs subgroup members in representative species
Fig. 4 Comparison of SWEETs clade members in representative species
Fig. 5 Roles of sugar transporters in long-distance transportation between source and sinkPD: Plasmodesmata; Fru: Fructose; Glu: Glucose; Suc: Sucrose.
[1]   WILLIAMS L E, LEMOINE R, SAUER N. Sugar transporters in higher plants-a diversity of roles and complex regulation[J]. Trends in Plant Science, 2000, 5(7): 283-290. DOI: 10.1016/S1360-1385(00)01681-2
doi: 10.1016/S1360-1385(00)01681-2
[2]   黄东梅,肖海涛,张志国,等.萱草糖转运蛋白HfSWEET2a的克隆及低温胁迫下的表达分析[J].应用技术学报,2020,20(4):367-374. DOI:10.3969/j.issn.2096-3424.2020.04.011
HUANG D M, XIAO H T, ZHANG Z G, et al. Cloning and expression analysis of a Hemerocallis fulva HfSWEET2a and its expression under low temperature stress[J]. Journal of Technology, 2020, 20(4): 367-374. (in Chinese with English abstract)
doi: 10.3969/j.issn.2096-3424.2020.04.011
[3]   HENRY C, RABOT A, LALOI M, et al. Regulation of RhSUC2, a sucrose transporter, is correlated with the light control of bud burst in Rosa sp.[J]. Plant, Cell & Environ-ment, 2011, 34(10): 1776-1789. DOI: 10.1111/j.1365-3040.2011.02374.x
doi: 10.1111/j.1365-3040.2011.02374.x
[4]   LI Y H, GUO T, CUI Y, et al. Cloning and expression of the sucrose transporter gene PsSUT1 from tree peony leaf[J]. Genetics and Molecular Research, 2015, 14(4): 12406-12415. DOI: 10.4238/2015.October.16.7
doi: 10.4238/2015.October.16.7
[5]   ZENG Z, LYU T, LYU Y M. LoSWEET14, a sugar transporter in lily, is regulated by transcription factor LoABF2 to participate in the ABA signaling pathway and enhance tolerance to multiple abiotic stresses in tobacco[J]. International Journal of Molecular Sciences, 2022, 23(23): 15093. DOI: 10.3390/ijms232315093
doi: 10.3390/ijms232315093
[6]   骆翔,曹尚银,李好先,等.石榴SUT基因家族鉴定及其在籽粒发育过程中的表达分析[J].果树学报,2020,37(4):485-494. DOI:10.13925/j.cnki.gsxb.20190351
LUO X, CAO S Y, LI H X, et al. Identification of SUT genes and their expression models during the development of seed in pomegranate[J]. Journal of Fruit Science, 2020, 37(4): 485-494. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20190351
[7]   BÜTTNER M. The monosaccharide transporter (-like) gene family in Arabidopsis [J]. FEBS Letters, 2007, 581(12): 2318-2324. DOI: 10.1016/j.febslet.2007.03.016
doi: 10.1016/j.febslet.2007.03.016
[8]   WEN S Y, NEUHAUS H E, CHENG J T, et al. Contribu-tions of sugar transporters to crop yield and fruit quality[J]. Journal of Experimental Botany, 2022, 73(8): 2275-2289. DOI: 10.1093/jxb/erac043
doi: 10.1093/jxb/erac043
[9]   姜翠翠,方智振,周丹蓉,等.‘芙蓉李’糖转运蛋白家族基因鉴定及表达分析[J].园艺学报,2022,49(2):252-264. DOI:10.16420/j.issn.0513-353x.2020-0724
JIANG C C, FANG Z Z, ZHOU D R, et al. Identification and expression analysis of sugar transporter family genes in ‘Furongli’ (Prunus salicina)[J]. Acta Horticulturae Sinica, 2022, 49(2): 252-264. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2020-0724
[10]   WU P, ZHANG Y Y, ZHAO S P, et al. Comprehensive analysis of evolutionary characterization and expression for monosaccharide transporter family genes in Nelumbo nucifera [J]. Frontiers in Ecology and Evolution, 2021, 9: 537398. DOI: 10.3389/fevo.2021.537398
doi: 10.3389/fevo.2021.537398
[11]   LI J M, ZHENG D M, LI L T, et al. Genome-wide function, evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd)[J]. Plant and Cell Physiology, 2015, 56(9): 1721-1737. DOI: 10.1093/pcp/pcv090
doi: 10.1093/pcp/pcv090
[12]   FANG T, PENG Y, RAO Y, et al. Genome-wide identification and expression analysis of sugar transporter (ST) gene family in longan (Dimocarpus longan L.)[J]. Plants, 2020, 9(3): 342. DOI: 10.3390/plants9030342
doi: 10.3390/plants9030342
[13]   SZENTHE A, SCHÄFER H, HAUF J, et al. Characterisation and expression of monosaccharide transporters in lupins, Lupinus polyphyllus and L. albus [J]. Journal of Plant Research, 2007, 120(6): 697-705. DOI: 10.1007/s10265-007-0112-1
doi: 10.1007/s10265-007-0112-1
[14]   ZENG Z, LYU T, JIA X, et al. Expression patterns of sugar transporter genes in the allocation of assimilates and abiotic stress in lily[J]. International Journal of Molecular Sciences, 2022, 23(8): 4319. DOI: 10.3390/ijms23084319
doi: 10.3390/ijms23084319
[15]   王丹琪,张皓,王鹏,等.梨STP基因家族鉴定及PbrSTP11调控梨花粉管生长的功能分析[J].南京农业大学学报,2022,45(3):493-502. DOI:10.7685/jnau.202106041
WANG D Q, ZHANG H, WANG P, et al. Identification of STP gene family in pear and functional analysis of PbrSTP11 in pollen tube growth regulation[J]. Journal of Nanjing Agricultural University, 2022, 45(3): 493-502. (in Chinese with English abstract)
doi: 10.7685/jnau.202106041
[16]   CHENG R, CHENG Y S, LÜ J H, et al. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit[J]. Physiologia Plantarum, 2018, 164(3): 307-319. DOI: 10.1111/ppl.12742
doi: 10.1111/ppl.12742
[17]   PENG Q, WANG L, OGUTU C, et al. Functional analysis reveals the regulatory role of PpTST1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit[J]. International Journal of Molecular Sciences, 2020, 21(3): 1112. DOI: 10.3390/ijms21031112
doi: 10.3390/ijms21031112
[18]   张清,胡伟长,张积森.植物蔗糖转运蛋白研究进展[J].热带作物学报,2016,37(1):193-202. DOI:10.3969/j.issn.1000-2561.2016.01.031
ZHANG Q, HU W C, ZHANG J S. Sucrose transporters in plants[J]. Chinese Journal of Tropical Crops, 2016, 37(1): 193-202. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2016.01.031
[19]   KÜHN C, GROF C P. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 288-298. DOI: 10.1016/j.pbi.2010.02.001
doi: 10.1016/j.pbi.2010.02.001
[20]   高蕾,肖文芳,李文燕,等.拟南芥蔗糖转运蛋白(SUTs)的功能研究进展[J].分子植物育种,2011,9(2):251-255. DOI:10.3969/j.issn.1672-416X.2011.02.020
GAO L, XIAO W F, LI W Y, et al. Progress on functions of sucrose transporters (SUTs) in Arabidopsis thaliana [J]. Molecular Plant Breeding, 2011, 9(2): 251-255. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-416X.2011.02.020
[21]   WANG Y Z, CHEN Y, WEI Q Z, et al. Phylogenetic relationships of sucrose transporters (SUTs) in plants and genome-wide characterization of SUT genes in Orchidaceae reveal roles in floral organ development[J]. PeerJ, 2021, 9: e11961. DOI: 10.7717/peerj.11961
doi: 10.7717/peerj.11961
[22]   IFTIKHAR J, LYU M L, LIU Z Y, et al. Sugar and hormone dynamics and the expression profiles of SUT/SUC and SWEET sugar transporters during flower development in Petunia axillaris [J]. Plants, 2020, 9(12): 1770. DOI: 10.3390/plants9121770
doi: 10.3390/plants9121770
[23]   耿艳秋,董肖昌,张春梅.园艺作物糖转运蛋白研究进展[J].园艺学报,2021,48(4):676-688. DOI:10.16420/j.issn.0513-353x.2020-0412
GENG Y Q, DONG X C, ZHANG C M. Recent progress of sugar transporter in horticultural crops[J]. Acta Horticulturae Sinica, 2021, 48(4): 676-688. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2020-0412
[24]   BARTH I, MEYER S, SAUER N. PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago major [J]. The Plant Cell, 2003, 15(6): 1375-1385. DOI: 10.1105/tpc.010967
doi: 10.1105/tpc.010967
[25]   BERTHIER A, MEURIOT F, DÉDALDÉCHAMP F, et al. Identification of a new sucrose transporter in rye-grass (LpSUT2): effect of defoliation and putative fructose sensing[J]. Plant Physiology and Biochemistry, 2014, 84: 32-44. DOI: 10.1016/j.plaphy.2014.09.002
doi: 10.1016/j.plaphy.2014.09.002
[26]   高志民,杨学文,彭镇华,等.绿竹BoSUT2基因的分子特征与亚细胞定位[J].林业科学,2010,46(2):45-50.
GAO Z M, YANG X W, PENG Z H, et al. Molecular characterization and subcellular localization of BoSUT2 from Bambusa oldhamii [J]. Scientia Silvae Sinicae, 2010, 46(2): 45-50. (in Chinese with English abstract)
[27]   ÖNER-SIEBEN S, RAPPL C, SAUER N, et al. Charac-terization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior [J]. Journal of Experimental Botany, 2015, 66(15): 4807-4819. DOI: 10.1093/jxb/erv255
doi: 10.1093/jxb/erv255
[28]   康爽,贺红霞,王铭,等.杏蔗糖转运蛋白基因PaSUC4的获得及其生物信息学分析[J].生物技术进展,2016,6(2):105-112. DOI:10.3969/j.issn.2095-2341.2016.02.05
KANG S, HE H X, WANG M, et al. The acquisition and bioinformatic analysis of sucrose transporter protein gene PaSUC4 from apricot[J]. Current Biotechnology, 2016, 6(2): 105-112. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-2341.2016.02.05
[29]   张红娇,张双,胡志宝,等.毛果杨PtSUT基因的全基因组鉴定及表达分析[J].分子植物育种,2022.
ZHANG H J, ZHANG S, HU Z B, et al. Genome wide identification and expression analysis of PtSUT genes in Populus trichocarpa [J]. Molecular Plant Breeding, 2022. (in Chinese with English abstract)
[30]   栗燕,杨旭升,杨秋生,等.牡丹蔗糖转运蛋白基因PsSUT2的克隆及表达分析[J].农业生物技术学报,2017,25(4):567-578. DOI:10.3969/j.issn.1674-7968.2017.04.006
LI Y, YANG X S, YANG Q S, et al. Cloning and expression analysis of sucrose transporter gene PsSUT2 from tree peony (Paeonia suffruticosa)[J]. Journal of Agricultural Biotechnology, 2017, 25(4): 567-578. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2017.04.006
[31]   GAHRTZ M, SCHMELZER E, STOLZ J, et al. Expression of the PmSUC1 sucrose carrier gene from Plantago major L. is induced during seed development[J]. The Plant Journal, 1996, 9(1): 93-100.
[32]   王双双,窦全丽,张柏林,等.白及蔗糖转运蛋白基因BsSUT2的克隆和表达分析[J].分子植物育种,2023,21(16):5273-5280. DOI:10.13271/j.mpb.021.005273
WANG S S, DOU Q L, ZHANG B L, et al. Cloning and expression analysis of a sucrose transporter gene BsSUT2 in Bletilla striata [J]. Molecular Plant Breeding, 2023, 21(16): 5273-5280. (in Chinese with English abstract)
doi: 10.13271/j.mpb.021.005273
[33]   ZANON L, FALCHI R, HACKEL A, et al. Expression of peach sucrose transporters in heterologous systems points out their different physiological role[J]. Plant Science, 2015, 238: 262-272. DOI: 10.1016/j.plantsci.2015.06.014
doi: 10.1016/j.plantsci.2015.06.014
[34]   PENG Q, CAI Y M, LAI E H, et al. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple[J]. BMC Plant Biology, 2020, 20: 191. DOI: 10.1186/s12870-020-02406-3
doi: 10.1186/s12870-020-02406-3
[35]   FROST C J, NYAMDARI B, TSAI C J, et al. The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis[J]. PLoS ONE, 2012, 7(8): e44467. DOI: 10.1371/journal.pone.0044467
doi: 10.1371/journal.pone.0044467
[36]   张利,徐向东,王丽娟,等.杨树蔗糖转运体基因PagSUT4的鉴定及功能分析[J].林业科学,2016,52(8):21-28. DOI:10.11707/j.1001-7488.20160803
ZHANG L, XU X D, WANG L J, et al. Identification and functional analysis of the Populus sucrose transporter gene PagSUT4 [J]. Scientia Silvae Sinicae, 2016, 52(8): 21-28. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20160803
[37]   YUAN M, WANG S P. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms[J]. Molecular Plant, 2013, 6(3): 665-674. DOI: 10.1093/mp/sst035
doi: 10.1093/mp/sst035
[38]   JEENA G S, KUMAR S, SHUKLA R K. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants[J]. Plant Molecular Biology, 2019, 100(4/5): 351-365. DOI: 10.1007/s11103-019-00872-4
doi: 10.1007/s11103-019-00872-4
[39]   WANG J, YAN C Y, LI Y N, et al. Crystal structure of a bacterial homologue of SWEET transporters[J]. Cell Research, 2014, 24(12): 1486-1489. DOI: 10.1038/cr.2014.144
doi: 10.1038/cr.2014.144
[40]   CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis [J]. Current Biology, 2013, 23(8): 697-702. DOI: 10.1016/j.cub.2013.03.021
doi: 10.1016/j.cub.2013.03.021
[41]   EOM J S, CHEN L Q, SOSSO D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Current Opinion in Plant Biology, 2015, 25: 53-62. DOI: 10.1016/j.pbi.2015.04.005
doi: 10.1016/j.pbi.2015.04.005
[42]   KLEMENS P A W, PATZKE K, DEITMER J, et al. Over-expression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis [J]. Plant Physiology, 2013, 163(3): 1338-1352. DOI: 10.1104/pp.113.224972
doi: 10.1104/pp.113.224972
[43]   ZHANG R, NIU K J, MA H L. Identification and expression analysis of the SWEET gene family from Poa pratensis under abiotic stresses[J]. DNA and Cell Biology, 2020, 39(9): 1606-1620. DOI: 10.1089/dna.2020.5418
doi: 10.1089/dna.2020.5418
[44]   WANG T, SONG Z, MENG W L, et al. Identification, characterization, and expression of the SWEET gene family in Phalaenopsis equestris and Dendrobium officinale [J]. Biologia Plantarum, 2018, 62(1): 24-32. DOI: 10.1007/s10535-017-0750-7
doi: 10.1007/s10535-017-0750-7
[45]   WU Y W, WANG Y P, SHAN Y X, et al. Characterization of SWEET family members from loquat and their responses to exogenous induction[J]. Tree Genetics & Genomes, 2017, 13(6): 123. DOI: 10.1007/s11295-017-1200-6
doi: 10.1007/s11295-017-1200-6
[46]   KUMAWAT S, SHARMA Y, VATS S, et al. Understanding the role of SWEET genes in fruit development and abiotic stress in pomegranate (Punica granatum L.)[J]. Molecular Biology Reports, 2022, 49(2): 1329-1339. DOI: 10.1007/s11033-021-06961-2
doi: 10.1007/s11033-021-06961-2
[47]   LI J M, QIN M F, QIAO X, et al. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri)[J]. Plant and Cell Physiology, 2017, 58(4): 839-850. DOI: 10.1093/pcp/pcx025
doi: 10.1093/pcp/pcx025
[48]   WANG L, YAO L N, HAO X Y, et al. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis [J]. Plant Molecular Biology, 2018, 96(6): 577-592. DOI: 10.1007/s11103-018-0716-y
doi: 10.1007/s11103-018-0716-y
[49]   ZHANG L, WANG L J, ZHANG J, et al. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth[J]. Tree Physiology, 2021, 41(5): 882-899. DOI: 10.1093/treephys/tpaa145
doi: 10.1093/treephys/tpaa145
[50]   XIE H H, WANG D, QIN Y Q, et al. Genome-wide iden-tification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development[J]. BMC Plant Biology, 2019, 19: 499. DOI: 10.1186/s12870-019-2120-4
doi: 10.1186/s12870-019-2120-4
[51]   YIN Q, ZHU L, DU P Z, et al. Comprehensive analysis of SWEET family genes in Eucalyptus (Eucalyptus grandis)[J]. Biotechnology & Biotechnological Equipment, 2020, 34(1): 595-604. DOI: 10.1080/13102818.2020.1790417
doi: 10.1080/13102818.2020.1790417
[52]   MIZUNO H, KASUGA S, KAWAHIGASHI H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnology for Biofuels, 2016, 9: 127. DOI: 10.1186/s13068-016-0546-6
doi: 10.1186/s13068-016-0546-6
[53]   FENG L, FROMMER W B. Structure and function of SemiSWEET and SWEET sugar transporters[J]. Trends in Biochemical Sciences, 2015, 40(8): 480-486. DOI: 10.1016/j.tibs.2015.05.005
doi: 10.1016/j.tibs.2015.05.005
[54]   LI J, CHEN D, JIANG G L, et al. Molecular cloning and expression analysis of EjSWEET15, enconding for a sugar transporter from loquat[J]. Scientia Horticulturae, 2020, 272: 109552. DOI: 10.1016/j.scienta.2020.109552
doi: 10.1016/j.scienta.2020.109552
[55]   张岗,刘思思,杨新杰,等.一个全新的铁皮石斛DoSWEET1基因的分子克隆与特性分析[J].药学学报,2016,51(6):991-997. DOI:10.16438/j.0513-4870.2015-1092
ZHANG G, LIU S S, YANG X J, et al. Molecular cloning and characterization of a novel DoSWEET1 gene from Dendrobium officinale [J]. Acta Pharmaceutica Sinica, 2016, 51(6): 991-997. (in Chinese with English abstract)
doi: 10.16438/j.0513-4870.2015-1092
[56]   LIU W X, PENG B, SONG A P, et al. Sugar transporter, CmSWEET17, promotes bud outgrowth in Chrysanthemum morifolium [J]. Genes, 2019, 11(1): 26. DOI: 10.3390/genes11010026
doi: 10.3390/genes11010026
[57]   魏培宁.水仙SWEET糖转运蛋白的cDNA克隆及其功能的初步研究[D].福州:福建农林大学,2020.
WEI P N. Sugar transporter SWEETs in Narcissus tazetta: cDNA cloning and functional studies[D].Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese with English abstract)
[58]   欧倩,王博雅,杜恬恬,等.慈竹BeSWEET4-2BeSWEET1a-2基因的克隆和表达分析[J].西北植物学报,2020,40(11):1833-1839. DOI:10.7606/j.issn.1000-4025.2020.11.1833
OU Q, WANG B Y, DU T T, et al. Cloning and expression analysis of BeSWEET4-2 and BeSWEET1a-2 from Bambusa emeiensis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(11): 1833-1839. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2020.11.1833
[59]   梁大曲,石长双,涂晶晶,等.马尾松PmSWEET基因的克隆、亚细胞定位及表达分析[J].植物生理学报,2022,58(2):447-457. DOI:10.13592/j.cnki.ppj.2021.0284
LIANG D Q, SHI C S, TU J J, et al. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana [J]. Plant Physiology Journal, 2022, 58(2): 447-457. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2021.0284
[60]   NEUHAUS H E. Transport of primary metabolites across the plant vacuolar membrane[J]. FEBS Letters, 2007, 581(12): 2223-2226. DOI: 10.1016/j.febslet.2007.02.003
doi: 10.1016/j.febslet.2007.02.003
[61]   王俊刚,赵婷婷,张树珍,等.植物单糖转运蛋白[J].植物生理学通讯,2007,43(6):1195-1201. DOI:10.13592/j.cnki.ppj.2007.06.031
WANG J G, ZHAO T T, ZHANG S Z, et al. Monosac-charide transporters in plants[J]. Plant Physiology Communi-cations, 2007, 43(6): 1195-1201. (in Chinese)
doi: 10.13592/j.cnki.ppj.2007.06.031
[62]   LI C L, MENG D, PIÑEROS M A, et al. A sugar transporter takes up both hexose and sucrose for sorbitol-modulated in vitro pollen tube growth in apple[J]. The Plant Cell, 2020, 32(2): 449-469. DOI: 10.1105/tpc.19.00638
doi: 10.1105/tpc.19.00638
[63]   WEI X Y, LIU F L, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Frontiers in Plant Science, 2014, 5: 569. DOI: 10.3389/fpls.2014.00569
doi: 10.3389/fpls.2014.00569
[64]   CHENG R, ZHANG H P, CHENG Y S, et al. In silico and expression analysis of the tonoplast monosaccharide transporter (TMT) gene family in Pyrus bretschneideri [J]. The Journal of Horticultural Science and Biotechnology, 2018, 93(4): 366-376. DOI: 10.1080/14620316.2017.1373603
doi: 10.1080/14620316.2017.1373603
[65]   XU Y, TAO Y Y, CHEUNG L S, et al. Structures of bacterial homologues of SWEET transporters in two distinct confor-mations[J]. Nature, 2014, 515(7527): 448-452. DOI: 10.1038/nature13670
doi: 10.1038/nature13670
[66]   李艳娇,李文才,孙琦,等.SWEET转运蛋白在作物中的功能研究及前景展望[J].山东农业科学,2019,51(6):154-159. DOI:10.14083/j.issn.1001-4942.2019.06.030
LI Y J, LI W C, SUN Q, et al. Functional research and prospect of SWEET transporter in crops[J]. Shandong Agricul-tural Sciences, 2019, 51(6): 154-159. (in Chinese with English abstract)
doi: 10.14083/j.issn.1001-4942.2019.06.030
[67]   CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532. DOI: 10.1038/nature09606
doi: 10.1038/nature09606
[68]   CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065): 207-211. DOI: 10.1126/science.1213351
doi: 10.1126/science.1213351
[69]   周燕妮.青杄SWEET1蛋白编码基因参与花粉萌发和逆境响应过程[D].北京:北京林业大学,2016.
ZHOU Y N. SWEET1 protein-coding gene is involved in pollen germination and stress response in Picea wilsonii [D].Beijing: Beijing Forestry University, 2016. (in Chinese with English abstract)
[70]   ZHOU A M, MA H P, FENG S, et al. DsSWEET17, a tonoplast-localized sugar transporter from Dianthus spicu-lifolius, affects sugar metabolism and confers multiple stress tolerance in Arabidopsis [J]. International Journal of Molecular Sciences, 2018, 19(6): 1564. DOI: 10.3390/ijms19061564
doi: 10.3390/ijms19061564
[71]   WANG P P, WEI P N, NIU F F, et al. Cloning and functional assessments of floral-expressed SWEET transporter genes from Jasminum sambac [J]. International Journal of Molecular Sciences, 2019, 20(16): 4001. DOI: 10.3390/ijms20164001
doi: 10.3390/ijms20164001
[72]   JIANG L, SONG C, ZHU X, et al. SWEET transporters and the potential functions of these sequences in tea (Camellia sinensis)[J]. Frontiers in Genetics, 2021, 12: 655843. DOI: 10.3389/fgene.2021.655843
doi: 10.3389/fgene.2021.655843
[73]   于馨淼,时梦,方庭,等.李果实中两个糖转运蛋白SWEET基因克隆及表达[J].应用与环境生物学报,2021,27(5):1372-1381. DOI:10.19675/j.cnki.1006-687x.2020.04001
YU X M, SHI M, FANG T, et al. Cloning and expression analysis of two sugar transporter SWEET genes in plum (Prunus salicina)[J]. Chinese Journal of Applied and Environ-mental Biology, 2021, 27(5): 1372-1381. (in Chinese with English abstract)
doi: 10.19675/j.cnki.1006-687x.2020.04001
[74]   吴依婉.枇杷糖转运蛋白基因家族与品种资源研究[D].杭州:浙江农林大学,2018.
WU Y W. The loquat sugar transporter protein gene family and its variety resources research[D].Hangzhou: Zhejiang A&F University, 2018. (in Chinese with English abstract)
[75]   YAMADA K, SAIJO Y, NAKAGAMI H, et al. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis [J]. Science, 2016, 354(6318): 1427-1430. DOI: 10.1126/science.aah5692
doi: 10.1126/science.aah5692
[1] CHENG Qin,HUANG Shu-shi,MEI Yan,XU Di,CHEN Li-mei. Fourier transform infrared (FTIR) spectroscopic characteristics of ornamental plant leaves in response to formaldehyde stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 674-682.