Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 328-340    DOI: 10.3785/j.issn.1008-9209.2022.04.291
Horticultural sciences     
Mining key genes of alkaloid synthesis pathway in lotus leaves based on metabolomics and transcriptomics
Shuangqin LI(),Zhongyi WANG,Wanyue ZHAO,Longqing CHEN,Huizhen HU()
College of Landscape Archi-tecture and Horticulture Sciences, Southwest Forestry University/Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Kunming 650224, Yunnan, China
Download: HTML   HTML (   PDF(5437KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore the molecular mechanism of alkaloid biosynthesis in lotus leaves, metabolomics and transcriptomics sequencing analyses were performed on mature lotus leaves of ‘Taikong Lian’ (high alkaloid content), ‘Juwuba’ (medium alkaloid content) and ‘Dazu Honglian’ (low alkaloid content) cultivars with significant differences in alkaloid content. Metabolomics analysis showed that there were 30, 32 and 14 different metabolites in the three groups of ‘Dazu Honglian’ vs ‘Taikong Lian’ (low vs high alkaloid content), ‘Dazu Honglian’ vs ‘Juwuba’ (low vs medium alkaloid content), and ‘Taikong Lian’ vs ‘Juwuba’ (high vs medium alkaloid content), respectively. These differential metabolites were mainly three types of isoquinoline alkaloids, namely benzylisoquinoline, bis-benzylisoquinoline and aporphine alkaloids, specifically including caaverine, 3-glucosyl-6, 7-dihydroxy-N-methyl-benzyltetrahydroisoquinoline, dopamine, L-tyramine, etc. To further explore the key genes of the above isoquinoline alkaloid biosynthesis pathway, the transcriptomics sequencing analysis of three cultivars were performed. The numbers of differentially expressed genes (DEGs) among the three groups (‘Dazu Honglian’ vs ‘Taikong Lian’, ‘Dazu Honglian’ vs ‘Juwuba’, and ‘Taikong Lian’ vs ‘Juwuba’) were 2 866, 2 739 and 3 932, respectively; and there were 379 DEGs in common, which contained isoquinoline alkaloid biosynthesis pathway genes. Combined with the results of metabolomics analysis, six key DEGs, including NnCYP80G, Nn6OMT, NnTYDC, NnNCS, NnRAV and NnERF, were finally screened and verified by real-time fluorescent quantitative polymerase chain reaction, which can be used for subsequent gene function verification and molecular regulation network analysis.



Key wordslotus leaf alkaloids      differential metabolites      differentially expressed genes (DEGs)      real-time fluorescent quantitative polymerase chain reaction     
Received: 29 April 2022      Published: 25 June 2023
CLC:  S682.32  
Corresponding Authors: Huizhen HU     E-mail: lishuangqin@swfu.edu.cn;Jenny_0129@swfu.edu.cn
Cite this article:

Shuangqin LI,Zhongyi WANG,Wanyue ZHAO,Longqing CHEN,Huizhen HU. Mining key genes of alkaloid synthesis pathway in lotus leaves based on metabolomics and transcriptomics. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 328-340.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.04.291     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/328


基于代谢组学和转录组学挖掘荷叶生物碱合成途径关键基因

为探究荷叶生物碱生物合成的分子机制,对生物碱含量差异显著品种‘太空莲’(高生物碱含量)、‘巨无霸’(中生物碱含量)和‘大足红莲’(低生物碱含量)的成熟荷叶进行代谢组学和转录组学测序分析。代谢组学分析发现,在‘大足红莲’及‘太空莲’(低生物碱含量vs高生物碱含量)、‘大足红莲’及‘巨无霸’(低生物碱含量vs中生物碱含量)、‘太空莲’及‘巨无霸’(高生物碱含量vs中生物碱含量)3组中分别存在30、32、14种差异代谢物。这些差异代谢物主要为3类异喹啉类生物碱——苄基异喹啉类、双苄基异喹啉类、阿朴啡类生物碱,包括山矾碱、3-葡萄糖基-6,7-二羟基-N-甲基-苄基四氢异喹啉、多巴胺、L-酪胺等。为了挖掘上述异喹啉类生物碱生物合成途径的关键基因,进一步对3个品种进行转录组学测序分析。结果表明,‘大足红莲’及‘太空莲’、‘大足红莲’及‘巨无霸’、‘太空莲’及‘巨无霸’3组中的差异表达基因(differentially expressed genes, DEGs)分别为2 866、2 739、3 932个,共有的DEGs有379个,这些共有基因中含有异喹啉类生物碱生物合成途径基因。结合代谢组学分析结果,最终筛选并通过实时荧光定量聚合酶链反应验证得到6个关键DEGs——NnCYP80GNn6OMTNnTYDCNnNCSNnRAVNnERF,它们可用于后续基因功能验证和分子调控网络解析。


关键词: 荷叶生物碱,  差异代谢物,  差异表达基因,  实时荧光定量聚合酶链反应 

基因名称

Gene name

基因号

Gene ID

正向引物(5→3

Forward primer (5→3)

反向引物(5→3

Reverse primer (5→3)

NnCYP80GLOC104595105GATCGATTGCTTTCAGGCCGTTTCTCCTCTCTGGCGTGTG
Nn6OMTLOC104590845GGCGAAGAACGATATGGGCTGCCGACCAAGCTATCCTTGA
NnTYDCLOC104610815TGGCAAATAGCCCTCAGTCGCGGCACCACAATCTCAAACC
NnNCSLOC104609606GCGTTGGCACCATTCTATACGGCACGATTCAGCGTCTTTCTC
NnRAVLOC104603036TCTTCCCTTGCTTGACCGACAATTTAACCGGCGTCTCCGT
NnERFLOC104610490AGCTGGAGCAAACTAAGCGTTCTGCGTGCTGTTTCGGTAT
Table 1 Information of qRT-PCR primers
Fig. 1 Three lotus cultivars and their leaf samples
Fig. 2 Relative contents of alkaloids in TKL, JWB and DZHL cultivarsDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level.
Fig. 3 Metabolite quality assessment
Fig. 4 Clustering heatmap (A), volcano plot (B) and Venn diagram (C) of differential metabolites in TKL, JWB and DZHL cultivarsA. Red and green represent high content and low content, respectively; C. The data in the circle represent the numbers of differential metabolites.
Fig. 5 KEGG enrichment diagram of differential metabolites (A) and relative contents of alkaloids in significantly differential metabolites (B) in TKL, JWB and DZHL cultivarsGDNM-BnTHIQ: 3´-glucosyl-6, 7-dihydroxy-N-methyl-benzyltetrahydroisoquinoline. Different lowercase letters above bars indicate significant differences in relative contents of alkaloids of the same metabolite among different cultivars at the 0.05 probability level.
Fig. 6 Venn diagram (A) and clustering heatmap (B) of differential genes in TKL, JWB and DZHL cultivarsA. The data in the circle represent the numbers of differential metabolites; B: Red and green represent high expression level and low expression level, respectively.
Fig. 7 Schematic diagram of gene expression levels of isoquinoline alkaloid biosynthesis pathway
Fig. 8 Relative expression levels of candidate genes in mature lotus leaves of TKL, JWB and DZHL cultivarsDifferent lowercase letters above bars indicate significant differences of FPKM values of candidate genes (RNA-Seq) and relative expression levels of candidate genes (qRT-PCR) among different cultivars at the 0.05 probability level, respectively.
[1]   XUE J H, DONG W P, CHENG T, et al. Nelumbonaceae: systematic position and species diversification revealed by the complete chloroplast genome[J]. Journal of Systematics and Evolution, 2012, 50(6): 477-487. DOI: 10.1111/j.1759-6831.2012.00224.x
doi: 10.1111/j.1759-6831.2012.00224.x
[2]   黄博.中国荷叶资源及其生物活性研究[D].湖北,武汉:武汉大学,2011.
HUANG B. Studies on the resources and bioactivities of lotus (Nelumbo nucifera) leaf in China[D]. Wuhan, Hubei: Wuhan University, 2011. (in Chinese with English abstract)
[3]   王冰洁.中国莲文化研究[D].陕西,杨凌:西北农林科技大学,2015.
WANG B J. The research on Chinese lotus’ culture[D]. Yangling, Shaanxi: Northwest A&F University, 2015. (in Chinese with English abstract)
[4]   张行言,陈龙清.中国荷花新品种图志Ⅰ[M].北京:中国林业出版社,2011.
ZHANG X Y, CHEN L Q. Atlas Ⅰ of New Lotus Cultivars in China[M]. Beijing: China Forestry Publishing House, 2011. (in Chinese)
[5]   MUKHERJEE P K, MUKHERJEE D, MAJI A K, et al. The sacred lotus (Nelumbo nucifera): phytochemical and therapeutic profile[J]. Journal of Pharmacy & Pharmacology, 2009, 61(4): 407-422. DOI: 10.1211/jpp/61.04.0001
doi: 10.1211/jpp/61.04.0001
[6]   朱玲平.荷叶生物碱代谢路径关键基因的挖掘[D].湖北,武汉:中国科学院大学,2015.
ZHU L P. Identification of key genes involved in metabolic pathway of lotus leaf alkaloids[D]. Wuhan, Hubei: University of Chinese Academy of Sciences, 2015. (in Chinese with English abstract)
[7]   李梢.荷叶碱和荷叶提取物作为制备治疗萎缩性胃炎和/或阻断胃炎癌转化发生药物的应用:CN110393715A[P].2019-11-01.
LI S. Application of lotus leaf alkaloid and lotus leaf extract as drugs for treating atrophic gastritis and/or blocking the transformation of gastritis cancer: CN110393715A[P]. 2019-11-01. (in Chinese)
[8]   孙常磊,朱丽平,段朝辉,等.荷叶碱或含其的植物提取物的应用:CN102949299B[P].2013-03-06.
SUN C L, ZHU L P, DUAN C H, et al. Application of lotus leaf alkaloid or plant extract containing it: CN102949299B[P]. 2013-03-06. (in Chinese)
[9]   陈畅,谢永艳,黄丽萍.荷叶碱药理作用的研究进展[J].南京中医药大学学报,2021,37(4):619-624. DOI:10.14148/j.issn.1672-0482.2021.0619
CHEN C, XIE Y Y, HUANG L P. Advance of pharmaco-logical studies on nuciferine[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2021, 37(4): 619-624. (in Chinese with English abstract)
doi: 10.14148/j.issn.1672-0482.2021.0619
[10]   赵力.莲叶片生物碱合成基因的挖掘及功能鉴定[D].福建,福州:福建农林大学,2019.
ZHAO L. Mining and functional identification of alkaloid synthetic genes from lotus leaves[D]. Fuzhou, Fujian: Fujian Agriculture and Forestry University, 2019. (in Chinese with English abstract)
[11]   LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. DOI: 10.1186/s13059-014-0550-8
doi: 10.1186/s13059-014-0550-8
[12]   VARET H, BRILLET-GUÉGUEN L, COPPÉE J Y, et al. SARTools: a DESeq2- and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq Data[J]. PLoS ONE, 2016, 11(6): e0157022. DOI: 10.1371/journal.pone.0157022
doi: 10.1371/journal.pone.0157022
[13]   THÉVENOT E A, ROUX A, XU Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. Journal of Proteome Research, 2015, 14(8): 3322-3335. DOI: 10.1021/acs.jproteome.5b00354
doi: 10.1021/acs.jproteome.5b00354
[14]   PATRA B, SCHLUTTENHOFER C, WU Y M, et al. Transcriptional regulation of secondary metabolite biosynthesis in plants[J]. Biochimica et Biophysica Acta, 2013, 1829(11): 1236-1247. DOI: 10.1016/j.bbagrm.2013.09.006
doi: 10.1016/j.bbagrm.2013.09.006
[15]   ZHOU M L, MEMELINK J. Jasmonate-responsive trans-cription factors regulating plant secondary metabolism[J]. Biotechnology Advances, 2016, 34(4): 441-449. DOI: 10.1016/j.biotechadv.2016.02.004
doi: 10.1016/j.biotechadv.2016.02.004
[16]   DENG X B, ZHU L P, FAN T, et al. Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1130-1136. DOI: 10.1021/acs.jafc.5b06099
doi: 10.1021/acs.jafc.5b06099
[17]   BOKE H, OZHUNER E, TURKTAS M, et al. Regulation of the alkaloid biosynthesis by miRNA in opium poppy[J]. Plant Biotechnology Journal, 2015, 13(3): 409-420. DOI: 10.1111/pbi.12346
doi: 10.1111/pbi.12346
[18]   WINZER T, KERN M, KING A J, et al. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein[J]. Science, 2015, 349(6245): 309-312. DOI: 10.1126/science.aab1852
doi: 10.1126/science.aab1852
[19]   OTANI M, SHITAN N, SAKAI K, et al. Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica [J]. Plant Physiology, 2005, 138(4): 1939-1946. DOI: 10.1104/pp.105.064352
doi: 10.1104/pp.105.064352
[20]   YAMADA Y, MOTOMURA Y, SATO F. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells[J]. Plant and Cell Physiology, 2015, 56(5): 1019-1030. DOI: 10.1093/pcp/pcv027
doi: 10.1093/pcp/pcv027
[21]   TORRES M A, HOFFARTH E, EUGENIO L, et al. Structural and functional studies of pavine N-methyltransferase from Thalictrum flavum reveal novel insights into substrate recognition and catalytic mechanism[J]. Journal of Biological Chemistry, 2016, 291(45): 23403-23415. DOI: 10.1074/jbc.M116.747261
doi: 10.1074/jbc.M116.747261
[22]   DU H, YOU J S, ZHAO X, et al. Antiobesity and hypolipi-demic effects of lotus leaf hot water extract with taurine in rats fed a high fat diet[J]. Journal of Biomedical Science, 2010, 17(Suppl. 1): S42. DOI: 10.1186/1423-0127-17-S1-S42
doi: 10.1186/1423-0127-17-S1-S42
[23]   范婷婷,法鲁克,方芳,等.荷叶总生物碱降脂减肥作用的体内外试验[J].浙江大学学报(农业与生命科学版),2013,39(2):141-148. DOI:10.3785/j.issn.1088-9209.2012.11.064
FAN T T, FA L K, FANG F, et al. Effect of total alkaloids from lotus leaves on body mass and lipid regulation in vivo and in vitro [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 141-148. (in Chinese with English abstract)
doi: 10.3785/j.issn.1088-9209.2012.11.064
[24]   JUNG M A, LEE S Y, HAN S H, et al. Hypocholesterolemic effects of Curcuma longa L. with Nelumbo nucifera leaf in an in vitro model and a high cholesterol diet-induced hyper-cholesterolemic mouse mode[J]. Animal Cells Systems, 2015, 19(2): 133-143. DOI: 10.1080/19768354.2014.992953
doi: 10.1080/19768354.2014.992953
[25]   PAULI H H, KUTCHAN T M. Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3 ´ -hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis[J]. The Plant Journal, 1998, 13(6): 793-801.
[26]   GURKOK T, OZHUNER E, PARMAKSIZ I, et al. Functional characterization of 4 ´ OMT and 7OMT genes in BIA biosyn-thesis[J]. Frontiers in Plant Science, 2016, 7: 98. DOI: 10.3389/fpls.2016.00098
doi: 10.3389/fpls.2016.00098
[27]   YANG M, ZHU L P, LI L, et al. Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in lotus (Nelumbo nucifera)[J]. Frontiers in Plant Science, 2017, 8: 80. DOI: 10.3389/fpls.2017.00080
doi: 10.3389/fpls.2017.00080
[28]   VIMOLMANGKANG S, DENG X B, OWITI A, et al. Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants[J]. Scientific Reports, 2016, 6: 26323. DOI: 10.1038/srep26323
doi: 10.1038/srep26323
[29]   DENG X B, ZHAO L, FANG T, et al. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus[J]. Horticulture Research, 2018, 5: 29. DOI: 10.1038/s41438-018-0035-0
doi: 10.1038/s41438-018-0035-0
[30]   SHOJI T, KAJIKAWA M, HASHIMOT T. Clustered trans-cription factor genes regulate nicotine biosynthesis in tobacco[J]. The Plant Cell, 2010, 22(10): 3390-3409. DOI: 10.1105/tpc.110.078543
doi: 10.1105/tpc.110.078543
[31]   VAN MOERKERCKE A, STEENSMA P, GARIBOLDI I, et al. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus [J]. The Plant Journal, 2016, 88(1): 3-12. DOI: 10.1111/tpj.13230
doi: 10.1111/tpj.13230
[32]   KATO N, DUBOUZET E, KOKABU Y, et al. Identification of a WRKY protein as a transcriptional regulator of benzy-lisoquinoline alkaloid biosynthesis in Coptis japonica [J]. Plant and Cell Physiology, 2007, 48(1): 8-18. DOI: 10.1093/pcp/pcl041
doi: 10.1093/pcp/pcl041
[1] Attached Table S1-S3 Download
[1] Shengyi BAI,Xiaomin WANG,Wenjuan LIU,Guoxin CHENG,Meng GUO,Wenkong YAO,Yanming GAO,Jianshe LI. Screening of reference genes for real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) in tomato induced by different hormones[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 31-44.
[2] Zheng Nenzhu, Li Li, Xin Qingwu, Miao Zhongwei, Zhu Zhiming, Liu Fenghui, Wu Jianfei, Lu Lizhi. Influence of reference genes on expression of TYR, MITF and ASIP genes in tissues of Silky Fowl.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 732-740.