Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (2): 229-240    DOI: 10.3785/j.issn.1008-9209.2022.03.161
Resource utilization & environmental protection     
Effects of zinc oxide nanoparticles on nutrient uptake and photosynthesis of lettuce
Qili MU(),Kaijun CHEN,Yuhang LI,Tingqiang LI()
Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(4634KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To evaluate phytotoxicity of zinc oxide nanoparticles (ZnO NPs) on plants, the effects of 0, 5, 50, 250 mg/L ZnO NPs on nutrient uptake and photosynthesis of lettuce were studied using hydroponic culture with Zn2+ andbulk ZnO as comparisons. The results showed that ZnO NPs inhibited the growth of lettuce, and biomass of lettuce decreased obviously with the increase of ZnO NPs concentration. Under the 5-250 mg/L ZnO NPs treatments, the contents of magnesium (Mg), iron (Fe), manganese (Mn) and copper (Cu) in the shoots of lettuce were reduced by 18.0%-33.3%, 19.0%-28.6%, 17.2%-28.3% and 17.4%-33.8%, respectively. Further-more, 50 and 250 mg/L ZnO NPs treatments significantly decreased the chlorophyll content and chloroplast activity of lettuce. Under the 5-250 mg/L ZnO NPs treatments, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular carbon dioxide concentration (Ci) and transpiration rate (Tr) of lettuce decreased by 33.7%-75.0%, 21.3%-36.7%, 11.2%-29.0% and 30.7%-83.4%, respectively; the maximum photochemical efficiency (Fv /Fm), photochemical quenching coefficient (qP), actual photochemical quantum yield (ΦPSⅡ), and electron transport rate decreased by 6.3%-18.8%, 7.0%-14.0%, 5.0%-20.0% and 5.8%-20.7%, respectively. The inhibition of 250 mg/L ZnO NPs on the photosynthesis of lettuce was much greater than that of the corresponding Zn2+ release amount and bulk ZnO with the same concentration. These results indicate that ZnO NPs can inhibit the photosynthesis of lettuce by affecting the mineral nutrient absorption, hindering the chlorophyll synthesis, and reducing the photosystem Ⅱ activity.



Key wordszinc oxide nanoparticles      nutrient uptake      photosynthesis      phytotoxicity     
Received: 16 March 2022      Published: 27 April 2023
CLC:  Q945.78  
Corresponding Authors: Tingqiang LI     E-mail: 21914113@zju.edu.cn;litq@zju.edu.cn
Cite this article:

Qili MU,Kaijun CHEN,Yuhang LI,Tingqiang LI. Effects of zinc oxide nanoparticles on nutrient uptake and photosynthesis of lettuce. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 229-240.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.03.161     OR     https://www.zjujournals.com/agr/Y2023/V49/I2/229


氧化锌纳米颗粒对生菜养分吸收及光合作用的影响

为评价氧化锌纳米颗粒(ZnO nanoparticles, ZnO NPs)对植物的毒性效应,以生菜为材料,以Zn2+和ZnO微米颗粒作为对比,采用水培方法,研究不同质量浓度ZnO NPs(0、5、50、250 mg/L)对生菜养分吸收及光合作用的影响。结果表明:ZnO NPs抑制生菜的生长,随着ZnO NPs质量浓度的升高,生菜生物量明显降低。在5~250 mg/L ZnO NPs处理下,生菜地上部镁、铁、锰、铜含量分别减少18.0%~33.3%、19.0%~28.6%、17.2%~28.3%、17.4%~33.8%。50、250 mg/L ZnO NPs处理显著降低了生菜的叶绿素含量及叶绿体活性。在5~250 mg/L ZnO NPs处理下,生菜净光合速率(Pn)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)、蒸腾速率(Tr)分别下降33.7%~75.0%、21.3%~36.7%、11.2%~29.0%、30.7%~83.4%,最大光化学效率(Fv /Fm)、光化学猝灭系数(qP)、实际光化学量子产量(ΦPSⅡ)、电子传递效率等叶绿素荧光参数分别下降6.3%~18.8%、7.0%~14.0%、5.0%~20.0%、5.8%~20.7%。250 mg/L ZnO NPs对生菜光合作用的抑制远大于对应的Zn2+释放量及相同质量浓度的ZnO微米颗粒。这些研究结果表明,ZnO NPs可以通过影响生菜矿质养分的吸收、阻碍叶绿素的合成和降低光系统Ⅱ的活性来抑制生菜的光合作用。


关键词: 氧化锌纳米颗粒,  养分吸收,  光合作用,  植物毒性 
Fig. 1 Effects of different concentrations of ZnO NPs on lettuce growthCK: 0 mg/L ZnO NPs; NP5: 5 mg/L ZnO NPs; NP50: 50 mg/L ZnO NPs; NP250: 250 mg/L ZnO NPs; BP250: 250 mg/L bulk ZnO; Zn2+: 5.2 mg/L Zn2+ (corresponding to the Zn2+ amount released from 250 mg/L ZnO NPs) (the same as below). Different lowercase letters above bars indicate significant differences among different treatments for the same part at the 0.05 probability level.

处理

Treatment

N/(mg/g)P/(mg/g)K/(mg/g)Ca/(mg/g)Mg/(mg/g)Fe/(mg/kg)Mn/(mg/kg)Cu/(mg/kg)Zn/(mg/kg)

地上部

Shoot

CK

32.90±

1.68a

13.92±

0.53a

33.40±

0.71a

13.22±

0.63a

2.16±

0.21a

30.76±

0.71a

28.62±

0.56a

9.08±

0.44a

47.38±

7.56d

NP5

29.50±

0.85b

12.20±

0.99ab

29.67±

3.22b

11.57±

0.29bc

1.77±

0.04b

24.91±

1.70c

23.71±

0.40b

7.50±

0.48bc

159.63±

8.71c

NP50

28.03±

0.45b

11.90±

0.35ab

27.81±

0.54bc

10.87±

0.02c

1.57±

0.01bc

23.81±

0.52c

22.20±

0.43c

6.84±

0.31c

259.85±

2.69b

NP250

26.97±

0.62b

11.50±

0.43b

26.08±

0.93c

10.05±

0.19d

1.44±

0.05c

21.95±

0.82d

20.51±

0.61d

6.01±

0.24d

358.06±

7.95a

BP250

32.77±

0.27a

13.32±

0.31ab

32.04±

2.84a

12.57±

0.41ab

2.08±

0.03a

28.08±

0.44ab

26.58±

1.47ab

8.31±

0.69ab

48.37±

3.05d

Zn2+

30.08±

0.94ab

12.73±

0.03ab

29.13±

0.38b

11.77±

0.18bc

1.72±

0.03bc

26.23±

0.62bc

26.13±

0.97ab

8.03±

0.01abc

57.95±

7.52d

根系

Root

CK

34.13±

0.73a

16.97±

0.87a

32.67±

0.59a

22.07±

2.11a

2.58±

0.18a

37.61±

0.38a

15.79±

0.19a

17.50±

0.68a

85.40±

3.04d

NP5

31.06±

1.89abc

15.81±

0.24ab

29.35±

1.08ab

18.13±

0.15bcd

1.90±

0.02bc

30.37±

0.22c

12.30±

0.48bc

12.74±

0.19c

176.83±

3.45c

NP50

29.17±

1.54bc

12.73±

0.54bc

26.28±

0.84b

17.09±

0.65cd

1.77±

0.03bc

28.15±

0.86d

11.53±

0.81bc

9.76±

0.11cd

542.61±

24.50b

NP250

27.50±

0.95c

10.52±

0.43c

26.47±

0.98b

16.01±

0.21d

0.64±

0.10c

24.84±

0.16e

10.43±

0.31c

6.92±

0.22d

782.83±

52.49a

BP250

32.76±

0.41ab

14.03±

1.64bc

30.19±

1.06a

20.42±

0.46ab

2.47±

0.29a

36.63±

0.25a

14.64±

0.49a

16.50±

0.91ab

89.32±

2.82d

Zn2+

31.33±

1.28abc

13.53±

1.52bc

29.40±

1.52ab

19.83±

0.18abc

2.14±

0.09ab

33.94±

0.18b

14.13±

0.05ab

10.91±

0.29b

102.84±

4.12d

Table 1 Effects of different concentrations of ZnO NPs on the contents of mineral nutrients in lettuce
Fig. 2 Effects of different concentrations of ZnO NPs on chlorophyll contents (A) and Chl a/b ratio (B) in lettuceDifferent lowercase letters above bars indicate significant differences among different treatments for the same chlorophyll (Chl) content and Chl a/b ratio at the 0.05 probability level.
Fig. 3 Effects of different concentrations of ZnO NPs on the number and activity of chloroplasts in lettuceA-F: Left, cross-section of leaves; Right, upper epidermis of leaves. The autofluorescence of chloroplasts and cell walls is red hot and green, respectively.
Fig. 4 Effects of different concentrations of ZnO NPs on gas exchange parameters of lettuce leavesDifferent lowercase letters above bars indicate significant differences among different treatments at the 0.05 probability level, and the same as below.
Fig. 5 Effects of different concentrations of ZnO NPs on light response curve of lettuce leaves

处理

Treatment

表观量子效率

AQY

最大净光合速率

Pn, max

光饱和点

LSP

光补偿点

LCP

暗呼吸速率

Rd

CK0.049±0.002a11.649±0.018a665.462±2.031a5.611±0.065e0.781±0.110a
NP50.045±0.003ab8.578±0.012c583.176±3.029c6.574±0.045c0.620±0.104a
NP500.043±0.003b5.967±0.223d560.342±3.600d9.095±0.077b0.345±0.104b
NP2500.035±0.003c3.442±0.137e513.471±2.326e12.491±0.091a0.297±0.036b
BP2500.048±0.001a9.844±0.434b656.390±2.515b5.837±0.164e0.762±0.061a
Zn2+0.046±0.001ab8.922±0.462bc584.602±3.100c6.274±0.201d0.686±0.035a
Table 2 Effects of different concentrations of ZnO NPs on the simulation parameters of light response curve of lettuce leaves
Fig. 6 Effects of different concentrations of ZnO NPs on Rubisco activity of lettuce leaves
 

处理

Treatment

Fv /FmΦPSⅡqPNPQETR
CK0.80±0.002a0.20±0.008a0.43±0.013a2.93±0.077d102.85±4.247a
NP50.75±0.006b0.19±0.004b0.40±0.006bc3.38±0.048c96.90±1.839b
NP500.68±0.004c0.17±0.007c0.39±0.009cd3.76±0.003b88.40±3.689c
NP2500.65±0.012d0.16±0.002d0.37±0.012d4.14±0.085a81.60±1.020d
BP2500.79±0.013a0.20±0.006a0.43±0.013a3.06±0.003cd99.79±2.808ab
Zn2+0.79±0.007a0.19±0.003b0.41±0.012ab3.14±0.016cd95.15±1.472b
Fig. 7 Effects of different concentrations of ZnO NPs on chlorophyll fluorescent parameters in lettuce

参数

Parameter

地上部

shoot

根系

root

CaMgFeCuMnCaMgFeCuMn
Pn0.958**0.892**0.937**0.896**0.850**0.803**0.762**0.958**0.862**0.872**
Gs0.819**0.970**0.821**0.730**0.874**0.748**0.747**0.844**0.748**0.642**
Ci0.729**0.564*0.697**0.789**0.4120.798**0.4350.698**0.853**0.727**
Tr0.955**0.880**0.942**0.883**0.866**0.790**0.755**0.953**0.828**0.882**
Fv /Fm0.712**0.600**0.628**0.737**0.4070.693**0.469*0.705**0.865**0.634**
NPQ-0.744**-0.801**-0.751**-0.607**-0.864**-0.498*-0.689**-0.740**-0.591**-0.624**
qP0.713**0.551*0.618**0.647**0.553*0.4670.3970.614**0.724**0.623**
ΦPSⅡ0.819**0.744**0.765**0.846**0.773**0.540*0.509*0.813**0.810**0.802**
Chl a0.890**0.937**0.880**0.756**0.766**0.833**0.847**0.912**0.827**0.721**
Chl b0.871**0.941**0.858**0.746**0.768**0.812**0.828**0.898**0.817**0.694**
Rubisco0.879**0.678**0.790**0.838**0.560*0.737**0.624**0.825**0.952**0.784**
Table 3 Correlation analysis between mineral nutrient contents and photosynthetic parameters in lettuce
[1]   RUTTKAY-NEDECKY B, KRYSTOFOVA O, NEJDL L, et al. Nanoparticles based on essential metals and their phytotoxicity[J]. Journal of Nanobiotechnology, 2017, 15(1): 33. DOI: 10.1186/s12951-017-0268-3
doi: 10.1186/s12951-017-0268-3
[2]   HASHEMI S, ASRAR Z, POURSEYEDI S, et al. Investi-gation of ZnO nanoparticles on proline, anthocyanin contents and photosynthetic pigments and lipid peroxidation in the soybean[J]. IET Nanobiotechnology, 2019, 13(1): 66-70. DOI: 10.1049/iet-nbt.2018.5212
doi: 10.1049/iet-nbt.2018.5212
[3]   PULLAGURALA V L R, ADISA I O, RAWAT S, et al. ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum)[J]. Plant Physiology and Biochemistry, 2018, 132: 120-127. DOI: 10.1016/j.plaphy.2018.08.037
doi: 10.1016/j.plaphy.2018.08.037
[4]   GURMANI A R, JALAL-UD-DIN, KHAN S U, et al. Soil application of zinc improves growth and yield of tomato[J]. International Journal of Agriculture and Biology, 2012, 14: 91-96.
[5]   HUSSAIN F, HADI F, QIU R L. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation[J]. Environmental Science and Pollution Research, 2021, 28(26): 34697-34713. DOI: 10.1007/s11356-021-13132-0
doi: 10.1007/s11356-021-13132-0
[6]   高冠龙,冯起,张小由,等.植物叶片光合作用的气孔与非气孔限制研究综述[J].干旱区研究,2018,35(4):929-937. DOI: 10.13866/j.azr.2018.04.22
GAO G L, FENG Q, ZHANG X Y, et al. An overview of stomatal and non-stomatal limitations to photosynthesis of plants[J]. Arid Zone Research, 2018, 35(4): 929-937. (in Chinese with English abstract)
doi: 10.13866/j.azr.2018.04.22
[7]   MU X H, CHEN Y L. The physiological response of photosynthesis to nitrogen deficiency[J]. Plant Physiology and Biochemistry, 2021, 158: 76-82. DOI: 10.1016/j.plaphy.2020.11.019
doi: 10.1016/j.plaphy.2020.11.019
[8]   JAGHDANI S J, JAHNS P, TRÄNKNER M. The impact of magnesium deficiency on photosynthesis and photoprotec-tion in Spinacia oleracea [J]. Plant Stress, 2021, 2: 100040. DOI: 10.1016/j.stress.2021.100040
doi: 10.1016/j.stress.2021.100040
[9]   HSIEH S I, CASTRUITA M, MALASARN D, et al. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii [J]. Molecular & Cellular Proteomics, 2013, 12(1): 65-86. DOI: 10.1074/mcp.M112.021840
doi: 10.1074/mcp.M112.021840
[10]   COSTA M V J DA, SHARMA P K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa [J]. Photosynthetica, 2016, 54(1): 110-119. DOI: 10.1007/s11099-015-0167-5
doi: 10.1007/s11099-015-0167-5
[11]   张莹,陈光才,刘泓,等.氧化铜纳米颗粒对柳树光合作用、叶绿素荧光和抗氧化酶活性的影响[J].北方园艺,2017(11):83-89. DOI:10.11937/bfyy.201711018
ZHANG Y, CHEN G C, LIU H, et al. Influence of CuO nanoparticles on photosynthesis, chlorophyll fluorescence characteristics and antioxidant enzyme activities of willow[J]. Northern Horticulture, 2017(11): 83-89. (in Chinese with English abstract)
doi: 10.11937/bfyy.201711018
[12]   JUHEL G, BATISSE E, HUGUES Q, et al. Alumina nanoparticles enhance growth of Lemna minor [J]. Aquatic Toxicology, 2011, 105(3/4): 328-336. DOI: 10.1016/j.aquatox.2011.06.019
doi: 10.1016/j.aquatox.2011.06.019
[13]   LIN D H, XING B S. Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environmental Science & Technology, 2008, 42(15): 5580-5585. DOI: 10.1021/es800422x
doi: 10.1021/es800422x
[14]   鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[15]   牟建梅,张国芹,刘凤军,等.白菜叶绿素含量的测定方法筛选[J].江苏农业科学,2014(9):289-290. DOI:10.3969/j.issn.1002-1302.2014.09.099
MU J M, ZHANG G Q, LIU F J, et al. Selection of determination methods for chlorophyll content in Brassica campestris ssp. chinensis Makino[J]. Jiangsu Agricultural Sciences, 2014(9): 289-290. (in Chinese)
doi: 10.3969/j.issn.1002-1302.2014.09.099
[16]   ERMAKOVA M, DANILA F R, FURBANK R T, et al. On the road to C4 rice: advances and perspectives[J]. The Plant Journal, 2020, 101(4): 940-950. DOI: 10.1111/tpj.14562
doi: 10.1111/tpj.14562
[17]   PRIOUL J L, CHARTIER P. Partitioning of transfer and carboxylation components of intracellular resistance to photo-synthetic CO2 fixation: a critical analysis of methods used[J]. Annals of Botany, 1977, 41(174): 789-800.
[18]   HU L X, WANG Z L, HUANG B R. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species[J]. Physiologia Plantarum, 2010, 139(1): 93-106. DOI: 10.1111/j.1399-3054.2010.01350.x
doi: 10.1111/j.1399-3054.2010.01350.x
[19]   张永超,梁国玲,秦燕,等.老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应[J].草业学报,2022,31(1):229-237. DOI:10.11686/cyxb2020514
ZHANG Y C, LIANG G L, QIN Y, et al. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus [J]. Acta Pratacul-turae Sinica, 2022, 31(1): 229-237. (in Chinese with English abstract)
doi: 10.11686/cyxb2020514
[20]   李苑溪,陈锡云,罗达,等.铜胁迫下玉米叶片反射光谱的红边位置变化及其与叶绿素的关系[J].光谱学与光谱分析,2018,38(2):546-551. DOI:10.3964/j.issn.1000-0593(2018)02-0546-06
LI Y X, CHEN X Y, LUO D, et al. Effects of cuprum stress on position of red edge of maize leaf reflection hyperspectra and relations to chlorophyll content[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 546-551. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2018)02-0546-06
[21]   江红生.纳米银对水生植物紫萍的影响及作用机制[D].北京:中国科学院大学,2012.
JIANG H S. Silver nanoparticles effect and mechanism on aquatic plant Spirodela polyrhiza [D]. Beijing: University of Chinese Academy of Sciences, 2012. (in Chinese with English abstract)
[22]   HU J, WU X Y, WU F, et al. TiO2 nanoparticle exposure on lettuce (Lactuca sativa L.): dose-depedent deterioration of nutritional quality[J]. Environmental Science: Nano, 2020, 7(2): 501-513. DOI: 10.1039/c9en01215j
doi: 10.1039/c9en01215j
[23]   李威,黄进,李其昌,等.纳米颗粒对植物光合作用影响机制的研究[J].生物学杂志,2015,32(5):63-66, 69. DOI:10.3969/j.issn.2095-1736.2015.05.063
LI W, HUANG J, LI Q C, et al. Effect of nanoparticles on plant photosynthesis mechanism[J]. Journal of Biology, 2015, 32(5): 63-66, 69. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-1736.2015.05.063
[24]   RAMÍREZ D A, YACTAYO W, GUTIÉRREZ R, et al. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions[J]. Scientia Horticul-turae, 2014, 168: 202-209. DOI: 10.1016/j.scienta.2014.01.036
doi: 10.1016/j.scienta.2014.01.036
[25]   李海修.水稻叶绿体定位的ABC转运蛋白ARG1调节镍(Ni)和钴(Co)离子的稳态并关联光合作用效率[D].北京:中国科学院大学,2019. DOI:10.1111/nph.16708
LI H X. The ABC transporter ARG1 located in rice chloroplast regulates the homeostasis of nickel (Ni) and cobalt (CO) ions and correlates photosynthetic efficiency[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese with English abstract)
doi: 10.1111/nph.16708
[26]   TRÄNKNER M, TAVAKOL E, JÁKLI B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection[J]. Physiologia Plantarum, 2018, 163(3): 414-431. DOI: 10.1111/ppl.12747
doi: 10.1111/ppl.12747
[27]   蒋德安.植物生理学[M].2版.北京:高等教育出版社,2011:106-115.
JIANG D A. Plant Physiology[M]. 2nd ed. Beijing: Higher Education Press, 2011: 106-115. (in Chinese)
[28]   WANG Z Y, XU L N, ZHAO J, et al. CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression[J]. Environmental Science & Technology, 2016, 50(11): 6008-6016. DOI: 10.1021/acs.est.6b01017
doi: 10.1021/acs.est.6b01017
[29]   许大全,徐宝基.气孔限制在植物叶片光合诱导中的作用[J].植物生理学报,1989(3):275-280. DOI:10.3321/j.issn:1671-3877.1989.03.004
XU D Q, XU B J. Role of stomatal restriction in photo-synthetic induction of plant leaves[J]. Acta Phytophysiologica Sinica, 1989(3): 275-280. (in Chinese with English abstract)
doi: 10.3321/j.issn:1671-3877.1989.03.004
[30]   DIMKPA C O, MCLEAN J E, LATTA D E, et al. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat[J]. Journal of Nanoparticle Research, 2012, 14(9): 1125. DOI: 10.1007/s11051-012-1125-9
doi: 10.1007/s11051-012-1125-9
[31]   MARTÍNEZ-FERNÁNDEZ D, BARROSO D, KOMÁREK M. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure[J]. Environmental Science and Pollution Research, 2016, 23(2): 1732-1741. DOI: 10.1007/s11356-015-5423-5
doi: 10.1007/s11356-015-5423-5
[32]   ABBAS Q, LIU G J, YOUSAF B, et al. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement[J]. Environmental Pollution, 2019, 250: 728-736. DOI: 10.1016/j.envpol.2019.04.083
doi: 10.1016/j.envpol.2019.04.083
[33]   KATARIA S, JAIN M, RASTOGI A, et al. Chapter 6: role of nanoparticles on photosynthesis: avenues and applications//Nanomaterials in Plants, Algae and Microorganisms[M]. London, U. K.: Academic Press, 2019: 103-127. DOI: 10.1016/B978-0-12-811488-9.00006-8
doi: 10.1016/B978-0-12-811488-9.00006-8
[34]   路轲.喷施不同纳米材料对水稻幼苗生长和磷吸收的影响[D].北京:中国农业科学院,2020. DOI:10.11654/jaes.2019-0824
LU K. Effects of spraying different nanomaterials on growth and phosphorus uptake of rice seedlings[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract)
doi: 10.11654/jaes.2019-0824
[35]   贺军民,佘小平,孟朝妮,等.UV-B辐射引起的绿豆幼苗叶片Rubisco量降低与H2O2含量升高有关(英文)[J].植物生理与分子生物学学报, 2004,30(3):291-296.
HE J M, SHE X P, MENG Z N, et al. Reduction of Rubisco amount by UV-B radiation is related to increased H2O2 content in leaves of mung bean seedlings[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(3): 291-296. (in English)
[36]   王媛,王金亮.不同施肥条件下蔬菜叶绿素荧光-光谱特性研究[J].光谱学与光谱分析,2020,40(8):2427-2433. DOI:10.3964/j.issn.1000-0593(2020)08-2427-07
WANG Y, WANG J L. Chlorophyll fluorescence-spectral characteristics of vegetables under different fertilizer treat-ments[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2427-2433. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2020)08-2427-07
[37]   JOONAS E, ARUOJA V, OLLI K, et al. Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: filling the data gaps for risk assessment[J]. Science of the Total Environment, 2019, 647: 973-980. DOI: 10.1016/j.scitotenv.2018.07.446
doi: 10.1016/j.scitotenv.2018.07.446
[1] Xuyang ZHANG,Ying LIU,Linli LONG,Yongdong SU,Dongxing CHEN,Xiaoyang CHEN. Review on analysis of soil moisture changes caused by coal mining subsidence in arid and semi-arid areas and their potential effects on plant physiology and ecology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 415-425.
[2] Yang WU,Xiaohua YAO,Zhengsheng HE,Chun’e WANG,Huiwen ZHOU,Sicheng YE,Yingpei SONG,Fan WANG,Xian ZHANG,Yinxiang GAO. Research progress of light effects on photosynthesis, growth and development of oil-tea (Camellia oleifera)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 147-157.
[3] Fumei XIN,Yuting WANG,Shengmao LI, Danzengluobu, Pubuciren. Effects of different temperatures on photosynthesis and rooting of Cupressus gigantea seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 102-108.
[4] WANG Yihang, ZHAO Luyao, WANG Guoming, ZHU Aiyi. Physiological responses in Neolitsea sericea seedlings to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 543-551.
[5] XIN Fumei, JIA Liming, YANG Xiaolin, ZANG Jiancheng. Effects of drought stress on characteristics of water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 617-.
[6] . Plasticity responses of two sympodial bamboo species to nitrogen levels[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 608-613.
[7] ZHANG Kai‐ming,LI Yong‐hua,KONG De‐zheng,HE Song‐lin. Photo‐physiological mechanisms of tolerant difference to high temperature between two varieties of Celosia cristata[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(5): 501-508.