Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (2): 280-292    DOI: 10.3785/j.issn.1008-9209.2022.01.241
Agricultural engineering     
Design and optimization of main structure of unmanned vehicle-based field crop phenotyping platform
Zheng TANG1,2(),Yue YU1,2,Yufei LIU1,2,Haiyan CEN1,2()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(7641KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study aims to design and optimize the main structure of a stable and lightweight unmanned vehicle-based field crop phenotyping platform. In order to meet the requirement of high safety, high stability, and lightweight, Pro/Engineer Wildfire 5.0 software was used to design the main structure model of the platform, and HyperWorks 2020 software was employed to perform the finite element analysis and optimize the structure model. Meanwhile, the statics and dynamics analysis of the structure was implemented during the design process. Taking the main structural mass as the objective function, with the material yield limit and the first-order mode as the constraints, the design of experiment (DOE) method was applied to extract the structural parameters of parts with the high sensitivity to the first-order mode and stress under multi-working conditions as design variables, which greatly reduced the variable number. Then, the adaptive response surface method (ARSM) was applied for iterative calculation to obtain the optimal variables. Compared with the corresponding output response of the actual finite element model, the ARSM approximate model produced a low error of 3.79% and 4.32% in the main structure mass and the first-order modal frequency, respectively, which also obtained the maximum stress error of 4.24%, 4.14%, and 1.26% under the static and uniform speed conditions, starting conditions, and emergency shutdown conditions, respectively. These results show that the ARSM approximate model has a high accuracy and the error is less than 5%. Compared with the original structure, the final overall mass was reduced by 63.61% at maintaining the safety factor of each working condition above 5.0. As a result, the main structure of field crop phenotyping platform is obtained with high safety factor and meeting usage requirements.



Key wordsfield crop phenotyping platform      unmanned vehicle      finite element analysis      structural optimization      adaptive response surface method     
Received: 24 January 2022      Published: 27 April 2023
CLC:  S224.9  
Corresponding Authors: Haiyan CEN     E-mail: zhengtang@zju.edu.cn;hycen@zju.edu.cn
Cite this article:

Zheng TANG,Yue YU,Yufei LIU,Haiyan CEN. Design and optimization of main structure of unmanned vehicle-based field crop phenotyping platform. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 280-292.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.01.241     OR     https://www.zjujournals.com/agr/Y2023/V49/I2/280


田间作物表型获取无人车平台主体结构设计与优化

本研究旨在设计和优化一种稳定、轻量化的无人车载田间作物表型获取平台主体结构。为了满足高安全性、高稳定性、轻量化的要求,采用Pro/Engineer Wildfire 5.0软件设计无人车平台主体结构模型,并采用HyperWorks 2020软件进行有限元分析和结构模型优化。同时,在设计过程中对结构进行静力学和动力学分析。以结构整体质量最小化为目标函数,以材料屈服强度和一阶模态为约束条件,采用试验设计法提取多工况下对一阶模态和应力敏感的部件结构参数作为设计变量,大大减少了变量数量。应用自适应响应面法进行迭代计算,优化获取自适应的结构变量。与有限元模型的对应输出响应相比,自适应响应面近似模型在主体结构质量和一阶模态频率的误差分别为3.79%和4.32%,在静止与匀速、启动、停车工况下的最大应力误差分别为4.24%、4.14%和1.26%,表明自适应响应面近似模型具有满足设计要求的精度且误差均低于5%。相比于优化前的主体结构,在保持各工况安全系数在5.0以上的情况下,实现整体质量减少63.61%,得到了安全系数高、稳定性强的田间作物表型获取平台主体结构。


关键词: 田间作物表型获取平台,  无人车,  有限元分析,  结构优化,  自适应响应面法 
Fig. 1 Schematic diagram of unmanned vehicle (capable of loading 150 kg)
Fig. 2 Schematic diagram of main structure of unmanned vehicle platform
Fig. 3 Simplified diagram of main structure of unmanned vehicle platformL: Cantilever length; F: Load; Y: Maximum deflection.
Fig. 4 Schematic diagram of the minimum extension length of the front part of main structure of unmanned vehicle platform
Fig. 5 Schematic diagram of the load setting
Fig. 6 Schematic diagram of the field route planning of information acquisition platform
Fig. 7 Static analysis of main structure of unmanned vehicle platform under various working conditionsA. Deformation nephogram under static and uniform speed conditions (maximum displacement 0.40 mm); B. Stress nephogram under static and uniform speed conditions (maximum Von Mises stress 18.43 MPa); C. Deformation nephogram under emergency shutdown conditions (maximum displacement 0.47 mm); D. Stress nephogram under emergency shutdown conditions (maximum Von Mises stress 15.53 MPa); E. Deformation nephogram under starting conditions (maximum displacement 0.39 mm); F. Stress nephogram under starting conditions (maximum Von Mises stress 21.22 MPa).

路面类型

Road surface type

道路不平度波长

Wavelength of road roughness (λ)/m

平坦公路 Flat road1.00~6.30
未铺装路面 Unpaved road0.77~2.50
搓板路 Washboard road0.74~5.60
碎石路 Gravel road0.32~6.30
Table 1 Wavelengths of road roughness for different road surface types
Fig. 8 Top 10-order modal diagram of main structure of unmanned vehicle platform
Fig. 9 The first-order modal diagram of main structure of unmanned vehicle platform without support elements
Fig. 10 Main effect curves of each responseA. Main effect curve of main structure mass; B. Main effect curve of main structure stress under static and uniform speed conditions; C. Main effect curve of main structure stress under emergency shutdown conditions; D. Main effect curve of main structure stress under starting conditions; E. Main effect curve of the first-order mode of main structure.

主效应

Main effect

各组变量灵敏度排序(降序)

Descending order of sensitivity of each group variables

12345678910
质量 MassP12P11P2P15P16P10P25P4P5P19

静止与匀速工况下冯·米塞斯应力

Von Mises stress under static and uniform speed conditions

P12P16P26P23P19P27P13P17P11P7

停车工况下冯·米塞斯应力

Von Mises stress under emergency shutdown conditions

P12P19P23P13P17P11P26P27P16P25

启动工况下冯·米塞斯应力

Von Mises stress under starting conditions

P12P16P26P27P17P13P19P23P7P28
一阶模态 The first-order modeP5P16P28P27P30P29P1P10P18P17
Table 2 Ranking of sensitivity of each group variables under different main effects (top 10)
Fig. 11 Final design variable grouping diagram
Fig. 12 Flow chart of adaptive response surface method
Fig. 13 Optimization iterative process for main structure massObjective function iteration curve of ARSM.

部件序号

Part number

初始值

Initial value

最优解

Optimal solution

其余部件 Rest of the parts3.01.0
P123.01.0
P163.02.5
P193.01.5
P53.01.0
P263.01.0
P233.01.0
P283.01.0
P273.01.0
P133.01.0
P173.01.5
Table 3 Thickness variation of each part
Fig. 14 Schematic diagram of thickness distribution of main structure of unmanned vehicle platform after optimization

响应

Response

近似值

Approximate value

准确值

Exact value

相对误差

Relative error/%

主体结构质量 Main structure mass/t0.035 50.036 93.79
一阶模态频率 The first-order modal frequency/Hz16.603 917.353 74.32

静止与匀速工况下最大应力

Maximum stress under static and uniform speed conditions/MPa

37.439 839.096 24.24

启动工况下最大应力

Maximum stress under starting conditions/MPa

37.862 139.498 24.14

停车工况下最大应力

Maximum stress under emergency shutdown conditions/MPa

37.599 438.078 91.26
Table 4 Comparisons of calculated values between finite element model and ARSM approximate model
阶次Order

频率

Frequency/Hz

振型

Vibration mode

1st17.353 7结构头部左右弯曲振动 Left and right bending vibration in the head of structure
2nd23.820 1结构头部上下弯曲振动 Up and down bending vibration in the head of structure
3rd24.401 4结构尾部上方左右弯曲振动 Left and right bending vibration above the tail of structure
4th29.832 6结构头部上下弯曲振动 Up and down bending vibration in the head of structure
5th56.506 5

结构头部与尾部上方左右扭转振动,其中头部右侧较低

Left and right torsion vibration above the head and tail of structure, and the right side of the head is low

6th65.597 6

结构头部与尾部上方左右扭转振动,其中头部左侧较低

Left and right torsion vibration above the head and tail of structure, and the left side of the head is low

7th74.764 0结构中部上方上下弯曲振动 Up and down bending vibration above the middle of structure
8th117.919 5结构尾部上方上下弯曲振动 Up and down bending vibration above the tail of structure
9th118.930 9

结构头部左右弯曲振动,结构中部上下弯曲振动

Left and right bending vibration in the head of structure, up and down bending vibration in the middle of structure

10th126.740 5

结构中部两侧上方局部张力振动

Local tension vibration above two sides in the middle of structure

Table 5 Modal analysis results of the optimized main structure of unmanned vehicle platform
Fig. 15 Working diagram of information acquisition platform in field
[1]   张佳菲,万亮,何勇,等.基于快速叶绿素荧光技术的油菜冠层生化参数垂直异质性分析[J].智慧农业(中英文),2021,3(1):40-50. DOI:10.12133/j.smartag.2021.3.1.202103-SA005
ZHANG J F, WAN L, HE Y, et al. Vertical heterogeneity analysis of biochemical parameters in oilseed rape canopy based on fast chlorophyll fluorescence technology[J]. Smart Agriculture, 2021, 3(1): 40-50. (in Chinese with English abstract)
doi: 10.12133/j.smartag.2021.3.1.202103-SA005
[2]   WAN L, CEN H Y, ZHU J P, et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer: a case study of small farmlands in the South of China[J]. Agricultural and Forest Meteorology, 2020, 291: 108096. DOI: 10.1016/j.agrformet.2020.108096
doi: 10.1016/j.agrformet.2020.108096
[3]   WAN L, ZHANG J F, DONG X Y, et al. Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model[J]. Computers and Electronics in Agriculture, 2021, 187: 106304. DOI: 10.1016/j.compag.2021.106304
doi: 10.1016/j.compag.2021.106304
[4]   YOUNG S N, KAYACAN E, PESCHEL J M. Design and field evaluation of a ground robot for high-throughput pheno-typing of energy sorghum[J]. Precision Agriculture, 2019, 20(4): 697-722. DOI: 10.1007/s11119-018-9601-6
doi: 10.1007/s11119-018-9601-6
[5]   WANG X, SINGH D, MARLA S, et al. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies[J]. Plant Methods, 2018, 14: 53. DOI: 10.1186/s13007-018-0324-5
doi: 10.1186/s13007-018-0324-5
[6]   BUSEMEYER L, MENTRUP D, MÖLLER K, et al. Breed-Vision: a multi-sensor platform for non-destructive field-based phenotyping in plant breeding[J]. Sensors, 2013, 13(3): 2830-2847. DOI: 10.3390/s130302830
doi: 10.3390/s130302830
[7]   WHITE J W, ANDRADE-SANCHEZ P, GORE M A, et al. Field-based phenomics for plant genetics research[J]. Field Crops Research, 2012, 133: 101-112. DOI: 10.1016/j.fcr.2012.04.003
doi: 10.1016/j.fcr.2012.04.003
[8]   KHALILIAN A, ROGERS N G, WILLIAMS P B, et al. Sensor-based algorithm for mid-season nitrogen application in corn[J]. Open Journal of Soil Science, 2017, 7: 278-287. DOI: 10.4236/ojss.2017.710020
doi: 10.4236/ojss.2017.710020
[9]   COMAR A, BURGER P, DE SOLAN B, et al. A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results[J]. Functional Plant Biology, 2012, 39(11): 914-924. DOI: 10.1071/FP12065
doi: 10.1071/FP12065
[10]   TANGER P, KLASSEN S, MOJICA J P, et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice[J]. Scientific Reports, 2017, 7: 42839. DOI: 10.1038/srep42839
doi: 10.1038/srep42839
[11]   SVENSGAARD J, ROITSCH T, CHRISTENSEN S. Develop-ment of a mobile multispectral imaging platform for precise field phenotyping[J]. Agronomy, 2014, 4: 322-336. DOI: 10.3390/agronomy4030322
doi: 10.3390/agronomy4030322
[12]   丁肇,李耀明,唐忠.轮式和履带式车辆行走对农田土壤的压实作用分析[J].农业工程学报,2020,36(5):10-18. DOI:10.11975/j.issn.1002-6819.2020.05.002
DING Z, LI Y M, TANG Z. Compaction effects of wheeled vehicles and tracked on farmland soil[J]. Transactions of the CSAE, 2020, 36(5): 10-18. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2020.05.002
[13]   SHI Y, WANG N, TAYLOR R K, et al. Improvement of a ground-LiDAR-based corn plant population and spacing measurement system[J]. Computers and Electronics in Agricul-ture, 2015, 112: 92-101. DOI: 10.1016/j.compag.2014.11.026
doi: 10.1016/j.compag.2014.11.026
[14]   MUELLER-SIM T, JENKINS M, ABEL J, et al. The robotanist: a ground-based agricultural robot for high-throughput crop phenotyping[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore City, the Republic of Singapore: IEEE, 2017: 3634-3639. DOI: 10.1109/ICRA.2017.7989418
doi: 10.1109/ICRA.2017.7989418
[15]   QIU Q, SUN N, BAI H, et al. Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “Phenomobile”[J]. Frontiers in Plant Science, 2019, 10: 554. DOI: 10.3389/fpls.2019.00554
doi: 10.3389/fpls.2019.00554
[16]   DEERY D, JIMENEZ-BERNI J, JONES H, et al. Proximal remote sensing buggies and potential applications for field-based phenotyping[J]. Agronomy, 2014, 5: 349-379. DOI: 10.3390/agronomy4030349
doi: 10.3390/agronomy4030349
[17]   UNDERWOOD J, WENDEL A, SCHOFIELD B, et al. Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle[J]. Journal of Field Robotics, 2017, 34(6): 1061-1083. DOI: 10.1002/rob.21728
doi: 10.1002/rob.21728
[18]   KICHERER A, HERZOG K, PFLANZ M, et al. An automated field phenotyping pipeline for application in grapevine research[J]. Sensors, 2015, 15(3): 4823-4836. DOI: 10.3390/s150304823
doi: 10.3390/s150304823
[19]   许延坡.薄板动力分析及拓扑优化的GPU加速研究[D].湖南,湘潭:湘潭大学,2019. DOI:10.7498/aps.68.20191276
XU Y P. Research on GPU acceleration for sheet dynamic analysis and topology optimization[D]. Xiangtan, Hunan: Xiangtan University, 2019. (in Chinese with English abstract)
doi: 10.7498/aps.68.20191276
[20]   兰凤崇,钟阳,庄良飘,等.基于自适应响应面法的车身前部吸能部件优化[J].汽车工程,2010,32(5):404-408. DOI:10.19562/j.chinasae.qcgc.2010.05.008
LAN F C, ZHONG Y, ZHUANG L P, et al. Optimization of energy absorbing members in front end of car body based on adaptive response surface method[J]. Automotive Engineering, 2010, 32(5): 404-408. (in Chinese with English abstract)
doi: 10.19562/j.chinasae.qcgc.2010.05.008
[21]   KESHTEGAR B, HAO P, WANG Y T, et al. An adaptive response surface method and Gaussian global-best harmony search algorithm for optimization of aircraft stiffened panels[J]. Applied Soft Computing, 2018, 66: 196-207. DOI: 10.1016/j.asoc.2018.02.020
doi: 10.1016/j.asoc.2018.02.020
[22]   许佩霞,蔡炳芳.基于ANSYS的全地形车车架结构优化设计[J].机械设计,2008,25(12):56-58. DOI:10.13841/j.cnki.jxsj.2008.12.016
XU P X, CAI B F. Structural optimization design on frame of all topography vehicle based on ANSYS[J]. Journal of Machine Design, 2008, 25(12): 56-58. (in Chinese with English abstract)
doi: 10.13841/j.cnki.jxsj.2008.12.016
[23]   韩红阳,陈树人,邵景世,等.机动式喷杆喷雾机机架的轻量化设计[J].农业工程学报,2013,29(3):47-53, 293. DOI:10.3969/j.issn.1002-6819.2013.03.007
HAN H Y, CHEN S R, SHAO J S, et al. Lightweight design of chassis frame for motor boom sprayer[J]. Transactions of the CSAE, 2013, 29(3): 47-53, 293. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2013.03.007
[24]   戴江梁,吴长德,谢小平,等.点焊连接的有限元建模方法研究及案例应用[J].现代制造工程,2014(9):74-80. DOI:10.16731/j.cnki.1671-3133.2014.09.003
DAI J L, WU C D, XIE X P, et al. Study and application on finite element modeling of spot welding connection[J]. Modern Manufacturing Engineering, 2014(9): 74-80. (in Chinese with English abstract)
doi: 10.16731/j.cnki.1671-3133.2014.09.003
[25]   刘磊,马爱军,刘洪英,等.基于HyperMesh的某航天产品结构螺栓连接处理方法研究[J].航天医学与医学工程,2015,28(6):441-444. DOI:10.16289/j.cnki.1002-0837.2015.06.010
LIU L, MA A J, LIU H Y, et al. Study on bolt connection processing methods of a space product structure based on HyperMesh software[J]. Space Medicine & Medical Engi-neering, 2015, 28(6): 441-444. (in Chinese with English abstract)
doi: 10.16289/j.cnki.1002-0837.2015.06.010
[26]   曾铁.地球重力加速度公式、数据及图示[J].职大学报,2013(2):85-87, 89. DOI:10.3969/j.issn.1671-1440.2013.02.022
ZENG T. The earth’s gravity acceleration formula, data and graphic[J]. Journal of the Staff and Worker’s University, 2013(2): 85-87, 89. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-1440.2013.02.022
[27]   张文昌.三轮摩托车平顺性研究与振动测试平台开发[D].湖北,武汉:武汉理工大学,2012. DOI:10.7666/d.y2099698
ZHANG W C. The research on ride comfort of three-wheeled motorcycle and the development of vibration test platform[D]. Wuhan, Hubei: Wuhan University of Technology, 2012. (in Chinese with English abstract)
doi: 10.7666/d.y2099698
[1] Peng HUO,Jianping LI,Xin YANG,Shucai XU,Xiaowen FAN. Structure design and field test of vibration swing type seedling lifting and soil cleaning machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 618-624.
[2] WANG Bo, WANG Jun, DU Dongdong. Finite element analysis of dynamic impact damage process of maize kernel based on HyperMesh and LS-DYNA[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 465-475.