Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (5): 618-624    DOI: 10.3785/j.issn.1008-9209.2020.03.041
Agricultural engineering     
Structure design and field test of vibration swing type seedling lifting and soil cleaning machine
Peng HUO1,2(),Jianping LI1(),Xin YANG1,Shucai XU2,Xiaowen FAN1,2
1.College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, Hebei, China
2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Download: HTML   HTML (   PDF(2325KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to realize the mechanization of the process of the orchard seedling leaving the nursery, the structure of seedling lifting and soil cleaning machine was designed, and the parametric design was carried out for key components such as seedling lifting device and soil cleaning device, and then finite element analysis and optimization were carried out for the seedling lifting shovel. The results showed that the maximum equivalent stress decreased from 5.026 MPa to 0.238 MPa, and the maximum equivalent strain decreased from 2.141 to 0.663. The overall deformation was far less than 5 mm, which met the design requirements. Finally, the reliability of the prototype was verified by field test. The results showed that the main root length of the seedlings was between 120 mm and 150 mm, and the injury rate of the seedlings was low, which met the requirements of agronomy. The size parameters of the machine are expected to provide a reference for the design and research of the seedling lifting and soil cleaning device.



Key wordsseedling lifting      soil cleaning      structural design      finite element analysis      field test     
Received: 04 March 2020      Published: 19 November 2020
CLC:  S 232  
Corresponding Authors: Jianping LI     E-mail: pah0319@163.com;ljpnd327@126.com
Cite this article:

Peng HUO,Jianping LI,Xin YANG,Shucai XU,Xiaowen FAN. Structure design and field test of vibration swing type seedling lifting and soil cleaning machine. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 618-624.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.03.041     OR     http://www.zjujournals.com/agr/Y2020/V46/I5/618


振摆式起苗清土一体机结构设计与田间试验

为了实现果园苗木出圃过程机械化,对起苗清土一体机的起苗装置、清土装置等关键部件进行参数化设计,并对起苗铲进行有限元分析和优化。结果表明:起苗铲最大等效应力由5.026 Mpa降为0.238 MPa,最大等效应变由2.141降为0.663,整体变形远小于设计要求的5 mm,符合设计要求。通过田间试验对样机可靠性进行验证,结果表明,所起苗木的主根长度在120~150 mm之间,苗株伤害率较低,满足农艺要求。该振摆式起苗清土一体机尺寸参数可为后续开展起苗清土装置的设计研发提供参考。


关键词: 起苗,  清土,  结构设计,  有限元分析,  田间试验 
Fig. 1 Structural diagram of seedling lifting and soil cleaning system1: Reducer; 2: Main drive chain; 3: Supporting drive chain; 4: Seedling lifting device; 5: Rack; 6: Soil cleaning device; 7: Seedling lifting shovel.
Fig. 2 Transportation belt and power transmission device1: Chain; 2: Bevel gear transmission; 3: Transmission shaft of expansion joint; 4: Right belt; 5: Left belt; 6: Pulley bracket; 7: Spring; 8: Guide pulley.
Fig. 3 Shaking type soil cleaning device1: Chain; 2: Shaft; 3: Swing ring; 4: Soil cleaning rod; 5: Ball joint connecting rod; 6: Connecting rod; 7: Oscillating rod.
Fig. 4 Diagram of spatial four-bar mechanism

装置组别

Installation group

LOA /mmLAB /mmLBC /mmLCD /mmLOD /mmα/(°)
1220.45142.85352.64349.79408.01-20
2220.59151.59339.94360.31400.63-20
3212.50140.59361.25350.69412.46-20
4220.76177.32340.52349.49408.01-20
5211.11140.90350.51363.25410.64-15
6234.58152.34353.84351.34393.49-20
7221.88171.58360.25364.28391.61-15
8209.90150.68350.82350.31413.06-15
9223.45142.27360.36362.44381.59-15
10220.69141.19358.92362.30391.61-20
Table 1 Real size of the optimized mechanism
参数 Parameter数值 Value
铲刃角 Shovel blade angle/(°)170
铲宽 Shovel width/mm400
铲厚 Shovel thickness/mm16
铲长 Shovel length/mm325
铲壁后倾角 Rake angle of shovel wall/(°)16
Table 2 Size parameters of seedling lifting shovel
Fig. 5 Design drawing of seedling lifting shovel
参数 Parameter数值 Value
密度 Density/(kg/m3)2.08×103
相对密度 Relative density2.68
内摩擦角 Angle of internal friction/rad0.436
体积模量 Bulk modulus/Pa35×106
剪切模量 Shear modulus/Pa22×106
含水率 Moisture content/%30
Table 3 Soil material parameters
Fig. 6 Simulation results of bionic seedling lifting shovelA. Equivalent stress; B. Equivalent strain.
Fig. 7 Optimization results of bionic seedling lifting shovelA. Equivalent stress; B. Equivalent strain.

试验序号

Test number

装置组别

Installation group

前进速度

Speed/(km/h)

主根长度

Length of main root/mm

主根平均长度

Average length of

main root/mm

12345678910
1第4组2.0147145152142134157142150135134143.8
23.6136132142143135129142157151149141.6
3第7组2.0143159131135146150152145152157147.0
43.6142146142153143152124135148138141.3
5传统组2.0122147120163141131157134143125138.3
63.6125145142125165125143165127123138.5
Table 4 Field test results
[1]   吴昊,肖冰,王琦,等.果苗苗木起苗机的初步分析. 林业机械与木工设备,2017,45(10):27-29. DOI:10.3969/j.issn.2095-2953.2017.10.008
WU H, XIAO B, WANG Q, et al. Preliminary analysis of fruit tree seedling lifters. Forestry Machinery and Woodworking Equipment, 2017,45(10):27-29. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-2953.2017.10.008
[2]   刘俊峰.苹果成品苗起苗机的设计与试验//纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集.北京:中国农业工程学会,2009:282-284.
LIU J F. Design and experiment of the apple plantlet uprising machine//Paper Collection for the 30th Anniversary of the Founding of the Chinese Society of Agricultural Engineering and the 2009 CSAE Annual Meeting. Beijing: Chinese Society of Agricultural Engineering, 2009:282-284. (in Chinese with English abstract)
[3]   陈桂宏,杨沈阳,徐浚泽.小型苗木挖取起苗机新技术. 节能,2020,39(4):103-104. DOI:10.3969/j.issn.1004-7948.2020.04.030
CHEN G H, YANG S Y, XU J Z. New technology of small-scale seedling cutting and picking machine. Energy Conservation, 2020,39(4):103-104. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-7948.2020.04.030
[4]   于慧春,刘俊峰,冯晓静,等.甘草起苗机的设计与试验. 农业机械学报,2006,37(7):56-58.
YU H C, LIU J F, FENG X J, et al. Design and experiment study of the liquorice digger. Transactions of the Chinese Society for Agricultural Machinery, 2006,37(7):56-58. (in Chinese with English abstract)
[5]   曾剑锋.联合起苗机起苗刀性能参数优化及根土分离的研究.哈尔滨:东北林业大学,2013:67-80.
ZENG J F. Study on the optimization of the performance parameters and the separation of root and soil of the combined seedling raising machine. Harbin: Northeast Forestry University, 2013:67-80. (in Chinese with English abstract)
[6]   路志坤,刘俊峰,李建平,等.苹果树起苗机的研究. 农机化研究,2011,33(2):55-57, 61. DOI:10.3969/j.issn.1003-188X.2011.02.014
LU Z K, LIU J F, LI J P, et al. Study on apple seedling raising machine. Journal of Agricultural Mechanization Research, 2011,33(2):55-57, 61. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2011.02.014
[7]   李建平,刘俊峰,杨欣,等.苹果苗木根系土壤振动分离装置设计与试验. 农业机械学报,2014,45():57-62. DOI:10.6041/j.issn.1000-1298.2014.S0.010
LI J P, LIU J F, YANG X, et al. Design for soil separating device from apple seedling root. Transactions of the Chinese Society for Agricultural Machinery, 2014,45():57-62. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2014.S0.010
[8]   杨欣,刘俊峰,李建平,等.苹果起苗铲有限元分析与结构设计. 农业机械学报,2011,42(2):84-87, 125.
YANG X, LIU J F, LI J P, et al. Structural design and finite element analysis of apple seedling lifter. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(2):84-87, 125. (in Chinese with English abstract)
[9]   王双成,刘俊峰,李建平.果树苗木起苗机苗土分离机构改进与模态分析:基于ANSYS Workbench. 农机化研究,2015,37(12):38-42. DOI:10.3969/j.issn.1003-188X.2015.12.010
WANG S C, LIU J F, LI J P. Improvement and modal analysis of seedling-soil separation mechanism of fruit tree seedlings lifter machine: based on ANSYS Workbench. Journal of Agricultural Mechanization Research, 2015,37(12):38-42. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2015.12.010
[10]   黄培奎,张智刚,罗锡文,等.田间作业车辆外部加速度辨识与姿态测量系统研制. 农业工程学报,2019,35(3):9-15. DOI:10.11975/j.issn.1002-6819.2019.03.002
HUANG P K, ZHANG Z G, LUO X W, et al. Development of the system for identifying the external acceleration and measuring the attitude of field vehicles. Transactions of the CSAE, 2019,35(3):9-15. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2019.03.002
[11]   周健,纪冬冬,李立君.深松铲减阻性及耕作阻力影响因素研究:基于LS-DYNA. 农机化研究,2019,41(5):157-162. DOI:10.3969/j.issn.1003-188X.2019.05.030
ZHOU J, JI D D, LI L J. Drag reduction of subsoiling shovel and influencing factors of tillage resistance: a study based on LS-DYNA. Journal of Agricultural Mechanization Research, 2019,41(5):157-162. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2019.05.030
[12]   张淑伟,杨有刚,韩超.基于ANSYS/LS-DYNA的土槽土壤深层振实机设计. 农机化研究,2018,40(6):112-115. DOI:10.3969/j.issn.1003-188X.2018.06.022
ZHANG S W, YANG Y G, HAN C. Design of the vibrating machine for deep soil bin based on ANSYS/LS-DYNA. Journal of Agricultural Mechanization Research, 2018,40(6):112-115. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2018.06.022
[13]   丁鹏,冯金科.移植苗培育技术. 现代农业科技,2012(18):176,179.
DING P, FENG J K. Cultivation technology of transplanting seedlings. Modern Agricultural Science and Technology, 2012(18):176,179. (in Chinese)
[14]   赵雄,马行潇,高巧玲,等.仿生减阻树木移植机铲片设计与试验. 农业工程学报,2018,34(16):37-42. DOI:10.11975/j.issn.1002-6819.2018.16.005
ZHAO X, MA X X, GAO Q L, et al. Design and experiment of blade of bionic drag-reducing tree transplanter. Transactions of the CSAE, 2018,34(16):37-42. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2018.16.005
[15]   贾士龙.苗木出圃的时间及起苗方法. 北京农业,2011(10):24.
JIA S L. Time and method of seedling emergence from nursery. Beijing Agriculture, 2011(10):24. (in Chinese)
[1] WANG Bo, WANG Jun, DU Dongdong. Finite element analysis of dynamic impact damage process of maize kernel based on HyperMesh and LS-DYNA[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 465-475.