Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 23-30    DOI: 10.3785/j.issn.1008-9209.2022.01.112
Biological sciences & biotechnologies     
Heat shock transcription factor HSFB2b negatively regulates plant thermomorphogenesis in Arabidopsis
Ziwei YAO1(),Jingliang SUN2,Jianxiang LIU1(),Haiping LU1()
1.College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.College of Environment and Bioresources, Dalian Minzu University, Dalian 116600, Liaoning, China
Download: HTML   HTML (   PDF(2331KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore whether heat shock transcription factor (HSF) known to be involved in plant adaptation to extreme heat stress is also involved in plant thermomorphogenesis at warm temperatures, the result of CRISPR/Cas9 gene editing, physiological and biochemical, genetic experiments, and effector-reporter assay demonstrated that the heat shock transcription factor HSFB2b was induced by the warm temperature and played an important role in the process of plant thermomorphogenesis. Under the warm temperature (29 ℃), the Arabidopsis mutant hsfb2b exhibited a longer hypocotyl than the wild type, suggesting that HSFB2b functioned as a negative regulator in thermomorphogenesis. Subcellular localization results showed that the HSFB2b protein was localized in the nucleus. Real-time quantitative polymerase chain reaction (qRT-PCR) analysis showed that the heat shock proteins (HSPs) gene, the heat shock transcription factor HSFA2, and the jasmonic acid degradation gene ST2A were up-regulated in the wild type under the warm temperature relative to the normal temperature (22 ℃), but these genes were more up-regulated by the warm temperature in the hsfb2b mutant than that in the wild type. Furthermore, effector-reporter assay demonstrated that HSFB2b could inhibit ST2A expression by binding to the heat shock element (HSE). In conclusion, the heat shock transcription factor HSFB2b induced by the warm temperature played a negative regulatory role in the hypocotyl elongation and negatively regulated the expression of gene ST2A by recognizing the HSE in molecular mechanism, thusnegatively regulated the plant thermomorphogenesis.



Key wordsArabidopsis      thermomorphogenesis      heat shock transcription factor      jasmonic acid catabolism      hypocotyl elongation     
Received: 11 January 2022      Published: 07 March 2023
CLC:  Q943.2  
Corresponding Authors: Jianxiang LIU,Haiping LU     E-mail: 21907011@zju.edu.cn;jianxiangliu@zju.edu.cn;luhaiping@zju.edu.cn
Cite this article:

Ziwei YAO,Jingliang SUN,Jianxiang LIU,Haiping LU. Heat shock transcription factor HSFB2b negatively regulates plant thermomorphogenesis in Arabidopsis. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 23-30.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.01.112     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/23


拟南芥热激转录因子HSFB2b负调控植物热形态建成

为探究参与极端高温环境应答的热激转录因子(heat shock transcription factor, HSF)是否也参与了温和高温下的植物热形态建成,本研究通过CRISPR/Cas9基因编辑技术,结合一系列生理生化和遗传学实验,以及效应因子-报告基因系统(effector-reporter)等实验方法,发现热激转录因子HSFB2b受温和高温诱导,在热形态建成过程中发挥着重要作用。在温和高温(29 ℃)下,拟南芥突变体hsfb2b表现出比野生型更长的下胚轴表型,揭示HSFB2b作为负调控因子在热形态建成中发挥作用。亚细胞定位实验表明,HSFB2b蛋白在细胞核中发挥功能。实时荧光定量聚合酶链反应分析表明,温和高温下野生型植株中热激蛋白(heat shock proteins, HSPs)基因、热激转录因子HSFA2和茉莉酸降解基因ST2A相对于常温(22 ℃)时表达上调,但这些基因在突变体hsfb2b中上调倍数更大。此外,效应因子-报告基因系统实验证实HSFB2b可以结合ST2A启动子热激元件(heat shock element, HSE),从而抑制ST2A表达。综上所述,受温和高温诱导的热激转录因子HSFB2b在下胚轴伸长调控中起负调控作用,并且在分子机制上HSFB2b通过识别HSE元件,负调控茉莉酸降解相关基因ST2A的表达,从而负调控植物热形态建成。


关键词: 拟南芥,  热形态建成,  热激转录因子,  茉莉酸代谢,  下胚轴伸长 

基因

Gene

编号

Code

引物序列(5→3

Primer sequence (5→3)

HSFB2aAT5G62020F: CTATCCCAACGCCGTTTCTC
R: CGAAATCTGTCGGATTCCATACGA
HSFB2bAT4G11660F: TTGTTCGTCAGCTCAATACTTACG
R: TTTCCGCCGTTGAATATCCCGAA
HSFA2AT2G26150F: GCGGCTTCTTCATCTGTA
R: CTGTTACGACCATTACTCCAA
ST2AAT5G07010F: ATCCCAAGTTTCTCCATGTG
R: AACATCTCTTGGAACTCGCA
HSP17.6AAT1G59860F: ATGGGATCCATTCAAGGAACTT
R: TTCTTTCTTCATCCCCGGTAAA
HSP17.8AT1G07400F: CTCAAGATCAGTGGAGAGAGAC
R: CTTCTTCTTAGCCTCTTCCACT
HSP23.6AT4G25200F: ATGGCATCTGCTCTCGCTCT
R: AGGAACAGAGCGGCGATATA
PP2AAT1G13320F: TAACGTGGCCAAAATGATGC
R: GTTCTCCACAACCGCTTGGT
Table 1 Primers used in qRT-PCR experiment
Fig. 1 Expression patterns of homology genes of HSFB2a and HSFB2b at the warm temperatureA. Homology alignment of protein sequences of HSFB subfamily in Arabidopsis; B-C. Expression levels of HSFB2a and HSFB2b at different temperatures. n=3.
Fig. 2 Negative regulatory role of HSFB2b in thermomorphogenesis of ArabidopsisA-B. Mutant sequences of hsfb2a and hsfb2b;C-D. Phenotype and length of hypocotyls in Arabidopsis. WT: Wild type. Different lowercase letters above bars indicate significant differences at the 0.05 probability level, and the same as below.
Fig. 3 Subcellular localizations of HSFB2a and HSFB2b proteins
Fig. 4 Expression patterns of downstream genes of HSFB2b at the warm temperature
Fig. 5 Negative regulation on thermomorphogenesis by HSFB2bA. Schematic diagram of the effector-reporter vectors; B. Relative luciferase activity; C. Working model for the regulatory role of HSFB2b in plant thermomorphogenesis. Single asterisk (*) indicates significant differences at the 0.05 probability level.
[1]   QUINT M, DELKER C, FRANKLIN K A, et al. Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2016, 2(1): 15190. DOI: 10.1038/nplants.2015.190
doi: 10.1038/nplants.2015.190
[2]   CASAL J J, BALASUBRAMANIAN S. Thermomorphogenesis[J]. Annual Review of Plant Biology, 2019, 70: 321-346. DOI: 10.1146/annurev-arplant-050718-095919
doi: 10.1146/annurev-arplant-050718-095919
[3]   ZHANG L L, LUO A, DAVIS S J, et al. Timing to grow: roles of clock in thermomorphogenesis[J]. Trends in Plant Science, 2021, 26(12): 1248-1257. DOI: 10.1016/j.tplants.2021.07.020
doi: 10.1016/j.tplants.2021.07.020
[4]   DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development[J]. Annual Review of Plant Biology, 2016, 67: 513-537. DOI: 10.1146/annurev-arplant-043015-112252
doi: 10.1146/annurev-arplant-043015-112252
[5]   VU L D, XU X Y, GEVAERT K, et al. Developmental plasticity at high temperature[J]. Plant Physiology, 2019, 181(2): 399-411. DOI: 10.1104/pp.19.00652
doi: 10.1104/pp.19.00652
[6]   LEGRIS M, KLOSE C, BURGIE E S, et al. Phytochrome B integrates light and temperature signals in Arabidopsis [J]. Science, 2016, 354(6314): 897-900. DOI: 10.1126/science.aaf5656
doi: 10.1126/science.aaf5656
[7]   CHENG M C, KATHARE P K, PAIK I, et al. Phytochrome signaling networks[J]. Annual Review of Plant Biology, 2021, 72: 217-244. DOI: 10.1146/annurev-arplant-080620-024221
doi: 10.1146/annurev-arplant-080620-024221
[8]   LEE N Y, CHOI G. Phytochrome-interacting factor from Arabidopsis to liverwort[J]. Current Opinion in Plant Biology, 2017, 35: 54-60. DOI: 10.1016/j.pbi.2016.11.004
doi: 10.1016/j.pbi.2016.11.004
[9]   LEIVAR P, QUAIL P H. PIFs: pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1): 19-28. DOI: 10.1016/j.tplants.2010.08.003
doi: 10.1016/j.tplants.2010.08.003
[10]   FRANKLIN K A, LEE S H, PATEL D, et al. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature[J]. PNAS, 2011, 108(50): 20231-20235. DOI: 10.1073/pnas.1110682108
doi: 10.1073/pnas.1110682108
[11]   汪硕,丁岚,刘建祥,等.拟南芥热形态建成中PIF4下游基因研究[J].生物技术通报,2018,34(7):57-65. DOI:10.13560/j.cnki.biotech.bull.1985.2018-0211
WANG S, DING L, LIU J X, et al. PIF4-regulated thermo-responsive genes in Arabidopsis [J]. Biotechnology Bulletin, 2018, 34(7): 57-65. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211
[12]   SUN J L, QI L L, LI Y N, et al. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth[J]. PLoS Genetics, 2012, 8(3): e1002594. DOI: 10.1371/journal.pgen.1002594
doi: 10.1371/journal.pgen.1002594
[13]   BELLSTAEDT J, TRENNER J, LIPPMANN R, et al. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls[J]. Plant Physiology, 2019, 180(2): 757-766. DOI: 10.1104/pp.18.01377
doi: 10.1104/pp.18.01377
[14]   BERBARDO-GARCÍA S, DE LUCAS M, MARTÍNEZ C, et al. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth[J]. Genes and Development, 2014, 28(15): 1681-1694. DOI: 10.1101/gad.243675.114
doi: 10.1101/gad.243675.114
[15]   BAI M Y, SHANG J X, OH E, et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis [J]. Nature Cell Biology, 2012, 14(8): 810-817. DOI: 10.1038/ncb2546
doi: 10.1038/ncb2546
[16]   LU H P, WANG J J, WANG M J, et al. Roles of plant hormones in thermomorphogenesis[J]. Stress Biology, 2021, 1: 20. DOI: 10.1007/s44154-021-00022-1
doi: 10.1007/s44154-021-00022-1
[17]   ZHU T T, HERRFURTH C, XIN M M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promoter plant growth[J]. Nature Communic-ations, 2021, 12: 4804. DOI: 10.1038/s41467-021-24883-2
doi: 10.1038/s41467-021-24883-2
[18]   JACOB P, HIRT H, BENDAHMANE A. The heat-shock protein/chaperone network and multiple stress resistance[J]. Plant Biotechnology Journal, 2017, 15(4): 405-414. DOI: 10.1111/pbi.12659
doi: 10.1111/pbi.12659
[19]   GUO M, LIU J H, MA X, et al. The plant heat stress transcript factors (HSFs): structure, regulation, and function in response to abiotic stress[J]. Frontiers in Plant Science, 2016, 7: 114. DOI: 10.3389/fpls.2016.00114
doi: 10.3389/fpls.2016.00114
[20]   SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family: structure, function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2): 104-119. DOI: 10.1016/j.bbagrm.2011.10.002 .
doi: 10.1016/j.bbagrm.2011.10.002
[21]   HAHN A, BUBLAK D, SCHLEIFF E, et al. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato[J]. The Plant Cell, 2011, 23(2): 741-755. DOI: 10.1105/tpc.110.076018
doi: 10.1105/tpc.110.076018
[22]   FRAGKOSTEFANAKIS S, MESIHOVIC A, SIMM S, et al. HsfA2 control the activity of developmentally and stress-regulated heat stress protection mechanism in tomato male reproductive tissue[J]. Plant Physiology, 2016, 170(4): 2461-2477. DOI: 10.1104/pp.15.01913
doi: 10.1104/pp.15.01913
[23]   LIU H C, CHANG Y Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress response and development[J]. Plant Physiology, 2013, 163(1): 276-290. DOI: 10.1104/pp.113.221168
doi: 10.1104/pp.113.221168
[24]   LIU H C, LIAO H T, CHANG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stress in Arabidopsis [J]. Plant Cell & Environment, 2011, 34(5): 738-751. DOI: 10.1111/j.1365-3040.2011.02278.x
doi: 10.1111/j.1365-3040.2011.02278.x
[25]   RÖTH S, MIRUS O, BUBLAK D, et al. DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1[J]. The Plant Journal, 2017, 89(1): 31-44. DOI: 10.1111/tpj.13317
doi: 10.1111/tpj.13317
[26]   FRAGKOSTEFANAKIS S, SIMM S, EL-SHERSHABY A, et al. The repressor and co-activator HsfB1 regulate the major heat stress transcription factors in tomato[J]. Plant Cell & Environment, 2019, 42(3): 874-890. DOI: 10.1111/pce.13434
doi: 10.1111/pce.13434
[27]   DING L, WANG S, SONG Z T, et al. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis [J]. Cell Reports, 2018, 25(7): 1718-1728. DOI: 10.1016/j.celrep.2018.10.060
doi: 10.1016/j.celrep.2018.10.060
[28]   JUNG J H, BARBOSA A, HUTIN S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis [J]. Nature, 2020, 585(7824): 256-260. DOI: 10.1038/s41586-020-2644-7
doi: 10.1038/s41586-020-2644-7
[29]   ZHANG L L, LI W, TIAN Y Y, et al. The E3 ligase XBAT35 mediates thermoresponsive hypocotyl growth by targeting ELF3 for degradation in Arabidopsis [J]. Journal of Integrative Plant Biology, 2021, 63(6): 1097-1103. DOI: 10.1111/jipb.13107
doi: 10.1111/jipb.13107
[1] Chao ZHANG,Ni WANG,Zheyi SHI,Min CHEN,Wenwu ZHOU,Ying ZHOU,Zengrong ZHU. Research progress on heat shock transcription factors in insects[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 701-708.