Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (5): 614-624    DOI: 10.3785/j.issn.1008-9209.2021.10.211
Resource utilization & environmental protection     
Screening of cellulose-degrading fungus Trichoderma longibrachiatum ZJ-10 and optimization of enzyme production conditions
Zijing LI(),Fan LIU,Sheng TANG,Qingxu MA,Kefeng HAN(),Lianghuan WU()
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(4000KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the degradation efficiency of cellulose distributed in livestock, poultry wastes and garden wastes, a high-efficiency cellulose-degrading fungus which was from bamboo shavings, dead branches, and rotted leaves, and sheep dung was screened with Congo red staining, filter paper disintegration test and the endoglucanase [carboxyl methyl cellulose (CMC)] activity was tested. The physiological and molecular identification of the strain was carried out. The results showed that a high-efficiency cellulose-degrading fungus was screened in this study, which was identified as Trichoderma longibrachiatum by morphological observation and fungus species identification, and named as T. longibrachiatum ZJ-10. Single factor test showed that the conditions for achieving the maximum enzyme production activity showed as follows: 3% inoculation, initial pH 6.5, rotation speed of 160 r/min, 40 ℃, and cultured for 5 d. According to Plackett-Burman experimental design, Box-Benhnken steepest climbing path method and response surface methodology, the optimal enzyme production medium formula was 5 g/L NaCl, 7 g/L peptone, and 12 g/L CMC-Na. Under the optimal conditions, the CMC enzyme activity of strain ZJ-10 could reach 80.32 U/mL, which was 26.45% higher than that of the former optimization. In conclusion, strain of T. longibrachiatum ZJ-10 with strong CMC enzyme activity was screened in this study, which provides a good strain resource for the utilization of livestock, poultry and garden waste resources.



Key wordsTrichoderma      cellulose      fungi      optimization of conditions      response surface methodology     
Received: 21 October 2021      Published: 02 November 2022
CLC:  X 713  
Corresponding Authors: Kefeng HAN,Lianghuan WU     E-mail: lizijing@zju.edu.cn;hkf1982@163.com;finm@zju.edu.cn
Cite this article:

Zijing LI,Fan LIU,Sheng TANG,Qingxu MA,Kefeng HAN,Lianghuan WU. Screening of cellulose-degrading fungus Trichoderma longibrachiatum ZJ-10 and optimization of enzyme production conditions. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 614-624.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.10.211     OR     https://www.zjujournals.com/agr/Y2022/V48/I5/614


纤维素降解菌长枝木霉菌(Trichoderma longibrachiatum)ZJ-10的筛选及产酶条件优化

为解决畜禽废弃物及园林废弃物中纤维素降解难的问题,本试验采用刚果红染色法、滤纸崩解试验和测定内切葡聚糖酶(羧甲基纤维素酶)活力法从竹屑、枯枝烂叶、羊粪等废弃物中筛选高效的纤维素降解真菌,并对该真菌进行分子生物学鉴定。结果表明,本研究筛选到1株高效纤维素降解真菌,经形态学观察和菌种鉴定确定其为长枝木霉菌(Trichoderma longibrachiatum),并命名为T. longibrachiatum ZJ-10。单因素试验得出菌株ZJ-10最适产酶培养条件为接种量3%,初始pH 6.5,转速160 r/min,温度40 ℃,培养5 d,此时达到最大产酶活力;通过Plackett-Burman试验设计、Box-Benhnken最陡爬坡路径方法及响应面法得出菌株ZJ-10最适产酶培养基配方为NaCl 5 g/L、蛋白胨7 g/L、羧甲基纤维素钠12 g/L。在最适条件下测定的菌株ZJ-10的酶活力可达到80.32 U/mL,比优化前提高了26.45%。综上所述,本研究筛选出1株产内切葡聚糖酶活力较强的木霉真菌T. longibrachiatum ZJ-10,为畜禽及园林废弃物资源化利用提供了良好的菌种资源。


关键词: 木霉菌属,  纤维素,  真菌,  条件优化,  响应面法 

菌株名称

Strain name

水解能力(H/C

Hydrolysis capacity (H/C)

滤纸崩解情况Disintegration of filter paper

滤纸分解率

Decomposition rate of filter paper/%

ZJ-11.71±0.01+++4.44±0.31
ZJ-21.26±0.03++1.63±0.08
ZJ-31.71±0.05+++5.49±0.30
ZJ-41.34±0.02+1.05±0.16
ZJ-51.33±0.04++1.75±0.10
ZJ-61.33±0.12++1.71±0.15
ZJ-71.85±0.02++++14.82±0.52
ZJ-81.55±0.03+1.28±0.06
ZJ-91.63±0.06+++6.42±0.13
ZJ-101.95±0.03+++++23.58±0.80
ZJ-111.37±0.03+1.22±0.12
ZJ-121.32±0.02+1.30±0.20
ZJ-131.56±0.03+++6.88±0.20
ZJ-141.36±0.03+1.44±0.18
ZJ-151.89±0.02+++++19.77±0.63
ZJ-161.36±0.05+1.24±0.35
ZJ-171.82±0.02++++11.98±0.43
Table 1 Hydrolysis capacities of different strains, disintegration of filter paper and decomposition rate
Fig. 1 Effects of different incubation times on the enzyme production of cellulose-degrading fungi
Fig. 2 Phylogenetic tree based on strain ZJ-10 and the related rDNA ITS sequence
Fig. 3 Effects of inoculation amount (A), initial pH (B), rotation speed (C), and temperature (D) on the enzyme production of strain ZJ-10

处理

Treatment

X1X2X3X4X5X6X7

CMC酶活力

CMC enzyme activity/(U/mL)

11-1-1-111-164.60
2111-1-11158.85
3-11-11-1-1151.63
41-11-1-1-1169.15
511111-1-163.60
611-11-11-158.94
7-111-11-1-169.05
8-1-11111167.96
9-1-111-11-175.43
101-1-111-1154.90
11-11-1-111156.53
12-1-1-1-1-1-1-165.18
效应 Effect-2.62-6.448.71-1.82-0.421.47-6.30
系数 Coefficient-1.31-3.224.36-0.91-0.210.73-3.15
T-1.87-4.606.23-1.30-0.301.04-4.50
P0.132 80.009 9**0.003 3**0.262 20.776 40.351 80.010 7*
R2 (R2Adj)0.956 2 (0.879 5)
Table 2 Plackett-Burman experimental design and evaluation of the response of various factors

试验号

Test No.

NaCl/(g/L)(A)

蛋白胨

Peptone/(g/L) (B)

CMC-Na/(g/L)(C)

CMC酶活力

CMC enzyme activity/(U/mL)

123861.16
234967.36
3451071.94
4561174.17
5671272.03
6781369.19
Table 3 Determination of optimum concentration ranges of NaCl, peptone and CMC-Na
试验号Test No.ABC

CMC酶活力

CMC enzyme activity/(U/mL)

方差分析 Analysis of variation

参量

Parameter

平方和

Sum of squares

F

F value

P

P value

1461062.31A53.8710.100.015 5*
2661066.31B137.6125.810.001 4**
3561172.20C220.9241.430.000 4**
4551057.29AB8.701.630.242 1
5571278.54AC4.280.800.399 8
6661272.85BC1.490.280.613 6
7561175.31A240.927.680.027 7*
8471164.21B282.5415.480.005 6**
9561174.12C214.372.700.144 6
10451159.41模型 Model578.5812.060.001 7**
11671175.61误差 Error37.32
12561174.29失拟项 Lack of fit29.074.700.084 6
13571064.91纯误差 Pure error8.25
14551268.48总和 Sum615.90
15461272.99R20.939 4
16651164.91R2Adj0.861 5
17561171.98
Table 4 Results and analysis of Box-Benhnken experiment
Fig. 4 Response surface diagrams of the effects of NaCl, peptone and CMC-Na on CMC enzyme activity
[1]   中华人民共和国国家统计局.中国统计年鉴:2020[M].北京:中国统计出版社,2020. DOI:10.23943/princeton/9780691179476.003.0005
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook: 2020[M]. Beijing: China Statistics Press, 2020. (in Chinese)
doi: 10.23943/princeton/9780691179476.003.0005
[2]   朱云芬,李蓉,向极钎,等.羊粪资源化利用的研究进展[J].湖北农业科学,2021,60(11):12-15. DOI:10.14088/j.cnki.issn0439-8114.2021.11.002
ZHU Y F, LI R, XIANG J Q, et al. Research advances in resources utilization of sheep manure[J]. Hubei Agricultural Sciences, 2021, 60(11): 12-15. (in Chinese with English abstract)
doi: 10.14088/j.cnki.issn0439-8114.2021.11.002
[3]   张景强,林鹿,孙勇,等.纤维素结构与解结晶的研究进展[J].林产化学与工业,2008,28(6):109-114. DOI:10.3321/j.issn:0253-2417.2008.06.023
ZHANG J Q, LIN L, SUN Y, et al. Advance of studies on structure and decrystallization of cellulose[J]. Chemistry and Industry of Forest Products, 2008, 28(6): 109-114. (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-2417.2008.06.023
[4]   李芳,勇伟,白雪薇,等.添加微生物菌剂和尿素对落叶堆肥的影响[C]//北京园林学会,北京市园林绿化局,北京市公园管理中心.2011北京园林绿化与生物多样性保护.北京:科学技术文献出版社,2011:317-321.
LI F, YONG W, BAI X W, et al. Effect of adding microbial agents and urea on the composting of fallen leaves[C]//Beijing Society of Landscape Architecture, Beijing Bureau of Landscaping, Beijing Park Management Center. 2011 Landscaping and Biodiversity Conservation in Beijing. Beijing: Scientific and Technical Documentation Press, 2011: 317-321. (in Chinese)
[5]   SHI Y, GE Y, CHANG J, et al. Garden waste biomass for renewable and sustainable energy production in China: potential challenges and development[J]. Renewable and Sustainable Energy Reviews, 2013, 22(8): 432-437. DOI:10.1016/j.rser.2013.02.003
doi: 10.1016/j.rser.2013.02.003
[6]   宁俊平,孙如玉,徐莹,等.纤维素降解菌研究综述[J].农家参谋,2021(3):117-118. DOI:10.5040/9781501338861.0018
NING J P, SUN R Y, XU Y, et al. Review of research on cellulose degrading bacteria[J]. The Farmers Consultant, 2021(3): 117-118. (in Chinese)
doi: 10.5040/9781501338861.0018
[7]   宫秀杰,钱春荣,于洋,等.近年纤维素降解菌株筛选研究进展[J].纤维素科学与技术,2021,29(2):68-77. DOI:10.16561/j.cnki.xws.2021.02.07
GONG X J, QIAN C R, YU Y, et al. Progress on screening of cellulose degrading strains in recent years[J]. Journal of Cellulose Science and Technology, 2021, 29(2): 68-77. (in Chinese with English abstract)
doi: 10.16561/j.cnki.xws.2021.02.07
[8]   王金明.高效纤维素降解真菌Aspergillus fumigatus YC2的产酶条件优化及转录组学分析[D].哈尔滨:东北农业大学,2020.
WANG J M. Fermentation condition optimization and transcriptome analysis of a efficient cellulose degrading fungus Aspergillus fumigatus YC2[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract)
[9]   张冬雪,文亚雄,罗志威,等.纤维素降解菌的分离筛选及其对水稻秸秆的降解效果分析[J].江西农业学报,2020,32(1):72-76. DOI:10.19386/j.cnki.jxnyxb.2020.01.12
ZHANG D X, WEN Y X, LUO Z W, et al. Isolation and screening of cellulose-degrading microbes and their degradation effects on paddy straw[J]. Acta Agriculturae Jiangxi, 2020, 32(1): 72-76. (in Chinese with English abstract)
doi: 10.19386/j.cnki.jxnyxb.2020.01.12
[10]   李佳腾,杨凡提,王世康,等.纤维素分解菌的筛选及杏鲍菇菌糠混菌发酵条件的优化[J].动物营养学报,2019,31(10):4802-4816. DOI:10.3969/j.issn.1006-267x.2019.10.046
LI J T, YANG F T, WANG S K, et al. Screening of cellulose-degradation strains and condition optimization of mixed strains fermentation of Pleurotus eryngii spent mushroom substrate[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4802-4816. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-267x.2019.10.046
[11]   马欣雨,孙丽娜,卢珊,等.秸秆降解菌的筛选及对秸秆的降解效果[J].生态学杂志,2020,39(4):1198-1205. DOI:10.13292/j.1000-4890.202004.012
MA X Y, SUN L N, LU S, et al. Screening of straw degrading microbial strains and their degradation effects[J]. Chinese Journal of Ecology, 2020, 39(4): 1198-1205. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.202004.012
[12]   甄静,王继雯,谢宝恩,等.一株纤维素降解真菌的筛选、鉴定及酶学性质分析[J].微生物学通报,2011,38(5):709-714. DOI:10.13344/j.microbiol.china.2011.05.010
ZHEN J, WANG J W, XIE B E, et al. Isolation, identification of a cellulase-producing strain and characterization of its cellulase-producing capability[J]. Microbiology China, 2011, 38(5): 709-714. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.2011.05.010
[13]   张玉云,丁轲,李旺,等.牛源纤维素降解菌的分离筛选与鉴定[J].河南科技大学学报(自然科学版),2021,42(5):72-77. DOI:10.15926/j.cnki.issn1672-6871.2021.05.012
ZHANG Y Y, DING K, LI W, et al. Isolation, screening and identification of cellulose degrading bacteria from cattle[J]. Journal of Henan University of Science and Technology (Natural Science), 2021, 42(5): 72-77. (in Chinese with English abstract)
doi: 10.15926/j.cnki.issn1672-6871.2021.05.012
[14]   诸葛诚祥.菌糠高效降解菌剂的研发及其在堆肥中的应用[D].杭州:浙江大学,2017.
ZHUGE C X. Research on high efficiency degrading microbial inoculum of spent mushroom substrate and its application in composting[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)
[15]   GHOSE T K. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2): 257-268.
[16]   魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
WEI J C. Handbook of Fungi Identification[M]. Shanghai: Shanghai Science and Technology Press, 1979. (in Chinese)
[17]   陶文斌,吴燕燕,李春生,等.响应面法优化腌制大黄鱼的低钠复合咸味剂配方[J].食品工业科技,2019,40(19):136-144. DOI:10.13386/j.issn1002-0306.2019.19.023
TAO W B, WU Y Y, LI C S, et al. Optimization of low-sodium compound salty agent formula for pickled Larimichthys crocea fillets by response surface methodology[J]. Science and Technology of Food Industry, 2019, 40(19): 136-144. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2019.19.023
[18]   许玉林,郑月霞,叶冰莹,等.一株纤维素降解真菌的筛选及鉴定[J].微生物学通报,2013,40(2):220-227. DOI:10.13344/j.microbiol.china.2013.02.006
XU Y L, ZHENG Y X, YE B Y, et al. Isolation and identification of a cellulose degrading fungi[J]. Microbiology China, 2013, 40(2): 220-227. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.2013.02.006
[19]   ADSUL M G, BASTAWDE K B, VARMA A J, et al. Strain improvement of Penicilli janthinellum NCIM 1171 for increased cellulose production[J]. Bioresource Technology, 2007, 98(7): 1467-1473. DOI:10.1016/j.biortech.2006.02.036
doi: 10.1016/j.biortech.2006.02.036
[20]   ZHANG Q, LO C M, JU L K. Factors affecting foaming behavior in cellulose fermentation by Trichoderma reesei Rut C-30[J]. Bioresource Technology, 2007, 98(4): 753-760. DOI:10.1016/j.biortech.2006.04.006
doi: 10.1016/j.biortech.2006.04.006
[21]   白洪志,杨谦,王希国,等.纤维素降解菌绿色木霉C-08的筛选及酶学特性研究[J].安徽农业科学,2007(17):5033-5034. DOI:10.13989/j.cnki.0517-6611.2007.17.005
BAI H Z, YANG Q, WANG X G, et al. Screening of Trichoderma viridin C-08 decomposition by cellulose and study on enzymatic property[J]. Journal of Anhui Agricultural Sciences, 2007(17): 5033-5034. (in Chinese with English abstract)
doi: 10.13989/j.cnki.0517-6611.2007.17.005
[22]   宁露佳,刘倩楠,景雯,等.白酒糟纤维素降解菌的分离筛选及发酵条件优化[J].中国酿造,2021,40(5):119-123. DOI:10.11882/j.issn.0254-5071.2021.05.022
NING L J, LIU Q N, JING W, et al. Isolation, screening and fermentation conditions optimization of cellulose-degrading bacteria in distiller’s grains[J]. China Brewing, 2021, 40(5): 119-123. (in Chinese with English abstract)
doi: 10.11882/j.issn.0254-5071.2021.05.022
[23]   雷文平,吴诗敏,李彩虹,等.响应面法优化凝固型发酵椰奶工艺[J].中国酿造,2019,38(2):212-216. DOI:10.11882/j.issn.0254-5071.2019.02.041
LEI W P, WU S M, LI C H, et al. Process optimization of set-style fermented coconut milk by response surface methodology[J]. China Brewing, 2019, 38(2): 212-216. (in Chinese with English abstract)
doi: 10.11882/j.issn.0254-5071.2019.02.041
[24]   胡文兵,杨占威,陈慧,等.Plackett-Burman和Box-Behnken试验设计优化超声波-酶法提取青钱柳多糖工艺及结构初探[J].天然产物研究与开发,2017,29(4):671-679. DOI:10.16333/j.1001-6880.2017.4.024
HU W B, YANG Z W, CHEN H, et al. Optimization of ultrasonic and enzyme-assisted extraction of polysaccharides from Cyclocarya paliurus by Plackett-Burman and Box-Behnken experiment and analysis of its structure[J]. Natural Product Research and Development, 2017, 29(4): 671-679. (in Chinese with English abstract)
doi: 10.16333/j.1001-6880.2017.4.024
[1] Shibei YOU,Jiahui XU,Yiwen GUO,Fanglei LIAO,Li YANG,Wenrong CHEN,Weidong GUO. Mechanism of root hair deficiency and growth-promoting effect of endophytic mycorrhizal fungi in blueberry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 417-427.
[2] Yibing ZENG,Liqiang JIANG,Guohua LI,Rui LIU,Hongye LI. Resistance and its molecular mechanism of Phyllosticta citricarpa and Phyllosticta citriasiana to benzimidazole fungicide[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 699-706.
[3] Yatao HE,Dandan GAO,Senning GAN,Ting SUN,Kuizheng CAI,Junlin LIU. Isolation and identification of a red pigment producer endophytic fungus Monascus sanguineus from Rehmannia glutinosa Libosch[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 1-7.
[4] YANG Hui, KE Leqin, SHU Ruonan, CHEN Yuwei, ZHU Tingyu, WANG Jun, FAN Jintao, WANG Liangliang. Effects of different storage time on polysaccharide content and antioxidant activity of edible fungi[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 356-364.
[5] WANG Jiakun, HEWenfeng.

Community and functionality of fungi in the gastrointestinal tracts of herbivores revealed by omics [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 131-139.

[6] FENG Guodong, XU Yongfeng, CHEN Jianfeng, ZHAO Wanzhong, WANG Xin, ZHANG Xiaosheng, JIANG Hui. Application of an aculeacin A acylase from Actinoplanes utahensis SW1311 in syntheses of echinocandins[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 416-424.
[7] HE Meixian, FU Yushi, RUAN Ruoxin, LI Hongye. Sensitivity assay of Alternaria alternata from citrus in China to four new fungicides[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 535-.
[8] Shu Ling, An Yi, Wang Xiaohan, Qin Weipu, Yang Lin, Liu Xiangdong. Simple preparation method and selective adsorption performance of novel activated carbon particles[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 111-118.
[9] Tong Jiepeng, Tong Chuan, Wang Yan, Ren Sanjuan, Shen Shengquan. Character identification, genetic analysis and gene mapping of a low cellulose mutant LCM527-1 in rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 261-268.
[10] Ma Xiaokui1*, Wu Lingling1, Lü Tingting1, Ding ning1, Zhou Lihui2, Chen Ling1, Wu Zhengchao1. Mass transfer process of petroleum hydrophobic organic compounds from nonaqueous phase into aqueous phase with fungi participation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 65-74.
[11] MA Xiaokui1*, JIANG Hua1, LI Junzhi2, CHEN Yong3,HE Xiaojing1.
Optimization of medium components for the production of exopolysaccharide by Lycoperdon pyriforme Schaeff.: Pers. using response surface methodology
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 481-488.
[12] CHEN Shao-yuan, Lü Zhen-er, DONG Feng-li, MAO Bi-zeng. Optimization of chlorophyll extraction from mulberry leaves using response surface methodology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 725-713.
[13] . Process optimization for phosphorus removal with ferric salt by response surface methodology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 623-628.
[14] WU Yifei1, YAO Xiaohong1, SUN Hong2, WANG Xin1, TANG Jiangwu1. Optimization of solidstate fermentation conditions of rapeseed meal using response surface analysis combined with principal component analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 490-496.
[15] ZHANG Rui‐qin,GUAN Bin,KONG Qing,YOU Yong,WU Ji‐qin,WEI Qun. Study on astaxanthin accumulation by heterotrophic transformation in Haematococcus pluvialis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 624-630.