Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (5): 605-613    DOI: 10.3785/j.issn.1008-9209.2021.10.122
Resource utilization & environmental protection     
Response of riverine nitrogen export to human activities and meteorological factors in a typical agricultural watershed of eastern China
Yun HAO(),Jun Lü()
Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(2546KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Non-point source nitrogen (N) pollution is one of the major environmental threats of water quality degradation in agricultural watersheds. Based on the monitoring data of N output at riverine outlet section and the calculation of net anthropogenic nitrogen input (NANI) in the Changle River watershed of Shengzhou City, Zhejiang Province from 2003 to 2016, the response relationships of riverine water quality to NANI and meteorological factors driving non-point source pollution were explored, and a response model was established to evaluate riverine N pollution sources in this study. The results showed that, during the study period, the average NANI was 95.77 kg/(hm2·a), among which chemical fertilizer N, net human food and animal feed N, atmospheric N deposition, biological N fixation and seed N contributed 53.90, 25.62, 11.94, 4.18 and 0.13 kg/(hm2·a), respectively. The average riverine N export was 2 178.78 t/a, which was positively correlated with NANI and precipitation, and negatively correlated with evaporation and wind speed in the studied watershed. Accordingly, the simulated results of the response model [R2=0.801 0, Nash-Sutcliffe efficiency coefficient (NSE)=0.799 1] showed that the historical remained N in the watershed, the NANI of the current year and the riverine background N accounted for 66.8%, 30.8% and 2.4% of the riverine N export, respectively. These results indicated that the historical remained N in the watershed was the largest contributor to riverine N pollution with a long-term impact on riverine water quality, which implied the existence of lag effect of riverine water quality in response to the measures of N emission reduction in the watershed. Therefore, the implementation of long-term N control measures should be an important strategy to prevent and control riverine N pollution in agricultural watershed.



Key wordsnet anthropogenic nitrogen input (NANI)      non-point source pollution      riverine nitrogen export      meteorological factors      response model     
Received: 12 October 2021      Published: 02 November 2022
CLC:  X 522  
Corresponding Authors: Jun Lü     E-mail: haoyun@zju.edu.cn;jlu@zju.edu.cn
Cite this article:

Yun HAO,Jun Lü. Response of riverine nitrogen export to human activities and meteorological factors in a typical agricultural watershed of eastern China. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 605-613.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.10.122     OR     https://www.zjujournals.com/agr/Y2022/V48/I5/605


我国东部典型农业流域河流氮输出对人类活动和气象因子的响应

非点源氮污染是农业流域水质退化的主要环境风险之一。本研究通过对2003—2016年浙江省嵊州市长乐江流域净人为氮输入量(net anthropogenic nitrogen input, NANI)和河流出口断面氮输出量的监测,探究河流水质对NANI和驱动非点源污染的气象因子的响应关系,并建立响应模型以分析河流氮的污染源。结果表明:2003—2016年,该流域NANI均值为95.77 kg/(hm2·a),其中施肥、净人类食品和畜禽饲料、大气氮沉降、生物固氮和种子氮的输入氮量均值分别为53.90、25.62、11.94、4.18、0.13 kg/(hm2·a)。流域内河流氮平均输出量为2 178.78 t/a;河流氮输出与流域NANI和降水量呈正相关,与蒸发量和风速呈负相关。响应模型(R2=0.801 0,纳什效率系数=0.799 1)的模拟结果表明,流域内的历史遗留氮、当年NANI和河流背景氮分别占河流氮输出总量的66.8%、30.8%、2.4%。流域内的历史遗留氮不仅是河流氮污染的最大贡献者,还会长期影响河流水质,这说明河流水质对流域氮减排措施的响应具有明显的滞后效应。因此,实施长期的控氮措施是防治农业流域河流氮污染的重要策略。


关键词: 净人为氮输入,  非点源污染,  河流氮输出,  气象因子,  响应模型 
Fig. 1 Location map of the Changle River watershed in Zhejiang Province
Fig. 2 Net anthropogenic N input in the Changle River watershed from 2003 to 2016
Fig. 3 Nitrogen fertilizer and compound fertilizer application in the Changle River watershed from 2003 to 2016
Fig. 4 Main impact factors of riverine N output in the Changle River watershed from 2003 to 2016A. Human activity impact factors; B. Meteorological impact factors.
Fig. 5 Simulated results of the response model between net anthropogenic N input and riverine N output in the Changle River watershed from 2003 to 2016
Fig. 6 Annual riverine TN output from NANI, historical retained N and background N in the Changle River watershed from 2003 to 2016
[1]   HOWARTH R, SWANEY D, BILLEN G, et al. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate[J]. Frontiers in Ecology and the Environment, 2012, 10(1): 37-43. DOI:10.1890/100178
doi: 10.1890/100178
[2]   VAN METER K J, BASU N B, VAN CAPPELLEN P. Two centuries of nitrogen dynamics: legacy sources and sinks in the Mississippi and Susquehanna River Basins[J]. Global Biogeochemical Cycles, 2017, 31(1): 2-23. DOI:‍10.1002/2016GB005498
doi: ?10.1002/2016GB005498
[3]   ZHANG W S, LI H P, LI Y L. Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs[J]. Science of the Total Environment, 2019, 656: 1108-1120. DOI:10.1016/j.scitotenv.2018.11.450
doi: 10.1016/j.scitotenv.2018.11.450
[4]   CHEN D J, HUANG H, HU M P, et al. Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics[J]. Environmental Science & Technology, 2014, 48(10): 5683-5690. DOI:10.1021/es500127t
doi: 10.1021/es500127t
[5]   李晓虹,刘宏斌,雷秋良,等.人类活动净氮输入时空变化特征及其影响因素:以香溪河流域为例[J].中国环境科学,2019,39(2):812-817. DOI:10.19674/j.cnki.issn1000-6923.2019.0099
LI X H, LIU H B, LEI Q L, et al. Spatio-temporal characteristics and influential factors of net anthropogenic nitrogen input: a case study of Xiangxi River watershed[J]. China Environmental Science, 2019, 39(2): 812-817. (in Chinese with English abstract)
doi: 10.19674/j.cnki.issn1000-6923.2019.0099
[6]   HONG B G, SWANEY D P, HOWARTH R W. Estimating net anthropogenic nitrogen inputs (NANI) to US watersheds: comparison of methodologies[J]. Environmental Science and Technology, 2013, 47(10): 5199-5207. DOI:10.1021/es303437c
doi: 10.1021/es303437c
[7]   HAN Y G, FAN Y T, YANG P L, et al. Net anthropogenic nitrogen inputs (NANI) index application in mainland of China[J]. Geoderma, 2014, 213: 87-94. DOI:‍10.1016/j.geoderma.2013.07.019
doi: ?10.1016/j.geoderma.2013.07.019
[8]   高伟,白辉,严长安,等.1952—2016年长江经济带天然与人为氮输入时空演变趋势[J].环境科学学报,2019,39(9):3134-3143. DOI:10.13671/j.hjkxxb.2019.0143
GAO W, BAI H, YAN C A, et al. Spatiotemporal evolution of natural and anthropogenic nitrogen inputs to Yangtze River Economic Belt from 1952 to 2016[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3134-3143. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2019.0143
[9]   LIU M, LU J. Solution of export coefficients of nitrogen from different land-use patterns based on Bayesian analysis[J]. Water Science and Technology, 2013, 68(3): 632-640.DOI:10.2166/wst.2013.173
doi: 10.2166/wst.2013.173
[10]   RUNKEL R L, CRAWFORD C G, COHN T A. Load Estimator (LOADEST): a FORTRAN Program for Estimating Constituent Loads in Streams and Rivers[M]. Charleston, South Carolina, USA: CreateSpace Independent Publishing Platform, 2004.
[11]   李娜,盛虎,何成杰,等.基于统计模型LOADEST的宝象河污染物通量估算[J].应用基础与工程科学学报,2012,20(3):355-366. DOI:10.3969/j.issn.1005-0930.2012.03.002
LI N, SHENG H, HE C J, et al. Pollutant fluxes estimation for Baoxiang River, Dianchi Lake by using LOADEST model[J]. Journal of Basic Science and Engineering, 2012, 20(3): 355-366. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-0930.2012.03.002
[12]   FANGMEIER A, HADWIGER-FANGMEIER A, VAN DER ERDEN L, et al. Effects of atmospheric ammonia on vegetation: a review[J]. Environmental Pollution, 1994, 86(1): 43-82. DOI:10.1016/0269-7491(94)90008-6
doi: 10.1016/0269-7491(94)90008-6
[13]   YAN X Y, CAI Z C, YANG R, et al. Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China[J]. Biogeochemistry, 2011, 106(3): 489-501. DOI:10.1007/s10533-010-9528-0
doi: 10.1007/s10533-010-9528-0
[14]   YAN X Y, OHARA T, AKIMOTO H. Bottom-up estimate of biomass burning in mainland of China[J]. Atmospheric Environment, 2006, 40: 5262-5273. DOI:‍10.1016/j.atmosenv.2006.04.040
doi: ?10.1016/j.atmosenv.2006.04.040
[15]   YANG R, TI C P, LI F Y, et al. Assessment of N2O, NO x and NH3 emissions from a typical rural catchment in eastern China[J]. Soil Science & Plant Nutrition, 2010, 56(1): 86-94. DOI:10.1111/j.1747-0765.2010.00459.x
doi: 10.1111/j.1747-0765.2010.00459.x
[16]   CHEN D J, HU M P, GUO Y, et al. Modeling forest/agricultural and residential nitrogen budgets and riverine export dynamics in catchments with contrasting anthropogenic impacts in eastern China between 1980—2010[J]. Agriculture, Ecosystems and Environment, 2016, 221: 145-155. DOI:‍10.1016/j.agee.2016.01.037
doi: ?10.1016/j.agee.2016.01.037
[17]   武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].北京:中国农业科学院,2005.
WU S X. The spatial and temporal change of nitrogen and phosphorus produced by livestock and poultry & their effects on agricultural non-point pollution in China[D]. Beijing: Chinese Academy of Agricultural Science, 2005. (in Chinese with English abstract)
[18]   TI C P, PAN J J, XIA Y Q, et al. A nitrogen budget of China’s mainland with spatial and temporal variation[J]. Biogeochemistry, 2012, 108(1/2/3): 381-394. DOI:10.1007/s10533-011-9606-y
doi: 10.1007/s10533-011-9606-y
[19]   嵊州市统计局.嵊州市统计年鉴(2003—2016)[EB/OL]. . DOI:10.1109/appeec.2016.7779658
Shengzhou Statistics Bureau. Shengzhou Statistical Yearbook (2003—2016)[EB/OL].
doi: 10.1109/appeec.2016.7779658
[20]   胡敏鹏.流域非点源氮污染的滞后效应定量研究[D].杭州:浙江大学,2019.
HU M P. Quantitative study on lag effect of watershed non-point source nitrogen pollution[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
[21]   高伟,郭怀成,后希康.中国大陆市域人类活动净氮输入量(NANI)评估[J].北京大学学报(自然科学版),2014,50(5):951-959. DOI:10.13209/j.0479-8023.2014.129
GAO W, GUO H C, HOU X K. Evaluating city-scale net anthropogenic nitrogen input (NANI) in mainland of China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(5): 951-959. (in Chinese with English abstract)
doi: 10.13209/j.0479-8023.2014.129
[22]   ZHANG W S, LI X Y, SWANEY D P, et al. Does food demand and rapid urbanization growth accelerate regional nitrogen inputs?[J]. Journal of Cleaner Production, 2016, 112: 1401-1409. DOI:10.1016/j.jclepro.2015.07.046
doi: 10.1016/j.jclepro.2015.07.046
[23]   YAN W J, MAYORGA E, LI X Y, et al. Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures[J]. Global Biogeochemical Cycles, 2010, 24: GB0A064. DOI:10.1029/2009GB003575
doi: 10.1029/2009GB003575
[24]   胡晓婷.上海市主要河流水-气界面温室气体通量及影响因素研究[D].上海:华东师范大学,2017.
HU X T. Research of greenhouse gases fluxes between water-air interface in main rivers of Shanghai and the influencing factors[D]. Shanghai: East China Normal University, 2017. (in Chinese with English abstract)
[25]   Carbon MEYBECK M., nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450. DOI:10.2475/ajs.282.4.401
doi: 10.2475/ajs.282.4.401
[1] Jining ZHANG,Xianxian ZHANG,Huifeng SUN,Cong WANG,Sheng ZHOU. Effects of different slow release fertilizers on nitrogen loss and cadmium migration in vegetable fields[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 619-627.
[2] Zhennan YE,Fei’er WANG,Lingye JI,Jie YU. Agricultural production structure adjustment based on a multi-objective control in the Tiaoxi watershed[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 66-74.
[3] CHANG Jian, YU Jie, WANG Fei’er, ZHENG Siyuan. Cost- effectiveness analysis of best management practices for non- point source pollution in watersheds: A review.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 137-145.
[4] FAN Lihua, MO Hongfei, ZHANG Xiaofeng, SHUAI Jiangbing, CHEN Qing. Identification of swine- specific microbial genetic markers using competitive DNA hybridization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 163-172.
[5] TU Jie1*, PEI Qingbao1, WANG Huimin2, LIAO Yingchun1, LI Yanyan1. Sap flow characteristics of Liquidambar formosana Hance and its relationships with meteorological factors in Jiangxi degraded red soil region[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 575-581.