Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (5): 619-627    DOI: 10.3785/j.issn.1008-9209.2020.11.161
Resource utilization & environmental protection     
Effects of different slow release fertilizers on nitrogen loss and cadmium migration in vegetable fields
Jining ZHANG1,2(),Xianxian ZHANG1,2,Huifeng SUN1,2,Cong WANG1,2,Sheng ZHOU1,2()
1.Institute of Eco-environmental Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
2.Shanghai Engineering Research Center of Low-carbon Agriculture, Shanghai 201415, China
Download: HTML   HTML (   PDF(958KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the experimented cadmium (Cd)-contaminated vegetable fields, the effects of slow release fertilizers (coated with sulfur, phosphate and attapulgite) on soil nitrogen loss and Cd contents were studied. The results showed that, compared with the conventional fertilizer treatment, the contents of NO3-N and dissolved nitrogen (DN) were improved by 5.6%-22.2% and 29.6%-50.6% in the soil samples, and the contents of NO3-N and DN in the leaching solution were decreased by 9.4%-17.4% and 22.8%-31.8%, respectively, indicating that slow release fertilizers could relieve nitrogen loss in soil. The soil electrical conductivity, available phosphorus and available potassium contents increased by 33.5%-41.6%, 63.1%-100.0% and 27.3%-42.7%, respectively. The contents of soil total Cd and available Cd were decreased by 13.5%-16.4% and 37.6%-48.0%, respectively, compared with those of the initial soil. The above results suggest that the coated slow release fertilizers can realize the safe utilization of mildly and moderately Cd contaminated vegetable fields. It provides a theoretical basis for the scientific application of slow release fertilizers to reduce non-point source pollution and heavy metal contamination in a vegetable field.



Key wordsvegetable      coating      cadmium      non-point source pollution      soil improvement     
Received: 16 November 2020      Published: 27 October 2021
CLC:  S 153.6  
Corresponding Authors: Sheng ZHOU     E-mail: j.n.zhang@163.com;zhous@263.net
Cite this article:

Jining ZHANG,Xianxian ZHANG,Huifeng SUN,Cong WANG,Sheng ZHOU. Effects of different slow release fertilizers on nitrogen loss and cadmium migration in vegetable fields. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 619-627.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.11.161     OR     http://www.zjujournals.com/agr/Y2021/V47/I5/619


不同缓释肥对蔬菜地氮素流失和重金属镉迁移的影响

以受镉污染的菜田为供试土壤,研究硫、磷和矿石粉包衣缓释肥对土壤氮素流失和镉含量的影响。结果表明,与常规施肥处理相比,硫包衣、磷包衣和矿石粉包衣缓释肥处理的土壤中硝态氮(NO3-N)和水溶性总氮(dissolved nitrogen, DN)含量分别增加5.6%~22.2%和29.6%~50.6%;淋出液中的NO3-N和DN含量分别降低9.4%~17.4%和22.8%~31.8%,表明缓释肥处理减少了土壤中氮素流失。土壤电导率、有效磷和速效钾含量分别提高33.5%~41.6%、63.1%~100.0%和27.3%~42.7%。与试验初期的土壤相比,3种缓释肥处理的土壤总镉和有效态镉含量分别降低了13.5%~16.4%和37.6%~48.0%。本研究结果表明,针对中轻度镉污染的土壤,包衣缓释肥可以实现受镉污染菜地的安全利用。这为科学利用缓释肥从源头削减面源污染和重金属累积提供了理论依据。


关键词: 蔬菜,  包衣,  镉,  面源污染,  土壤改良 

性质

Property

硫包衣缓释肥

Slow release fertilizer

coated with sulfur

磷包衣缓释肥

Slow release fertilizer

coated with phosphate

矿石粉包衣缓释肥

Slow release fertilizer

coated with attapulgite

来源 Source无机硫包裹尿素矿物磷包裹尿素凹凸棒粉包裹尿素
25 ℃时养分释放期 Nutrient release period at 25 ℃3个月3个月3个月
pH(1∶2.5)7.53±0.037.70±0.027.02±0.01
总碳 Total carbon/(g/kg)176.1±9.7156.9±1.1213.1±4.8
总氮 Total nitrogen/(g/kg)398.9±30.9292.0±12.5284.1±15.0
Table 1 Properties of the tested slow release fertilizers
Fig. 1 Effects of different slow release fertilizer treatments on the fresh vegetable yieldDifferent lowercase letters above the bars indicate significant differences among different treatments of the same vegetable at the 0.05 probability level.

测试指标

Measured index

不施肥

No fertilization

(CK)

常规施肥

Conventional

fertilization

硫包衣

Sulfur coating

磷包衣

Phosphate

coating

矿石粉包衣

Attapulgite

coating

pH(1∶2.5)7.10±0.32a6.95±0.33a6.90±0.19a6.90±0.20a6.93±0.23a
电导率 Electrical conductivity (1∶5)/(μS/cm)191.33±11.06c440.18±34.79b587.68±46.24a608.35±60.59a623.47±108.49a
有机质 Organic matter/(g/kg)15.91±0.21a16.22±0.23a16.01±0.20a15.93±0.25a16.11±0.28a
速效钾 Available potassium/(mg/kg)139.77±22.95c278.58±12.38b354.76±30.41a396.43±44.77a397.62±42.54a
有效磷 Available phosphorus/(mg/kg)87.50±8.65c158.34±14.44b258.33±28.79a312.50±63.39a316.67±39.44a
水溶性有机碳Dissolved organic carbon/(mg/kg)52.50±4.01a50.33±5.02a50.73±5.32a53.01±5.94a54.73±5.47a
Table 2 Effects of different slow release fertilizer treatments on the soil nutrient contents
Fig. 2 Effects of different slow release fertilizer treatments on soil nitrogen contentsDifferent lowercase letters above the bars indicate significant differences among different treatments of the same nitrogen form at the 0.05 probability level.
Fig. 3 Effects of different slow release fertilizer treatments on nitrogen contents in the leaching solutionDifferent lowercase letters above the bars indicate significant differences among different treatments of the same nitrogen form at the 0.05 probability level.
Fig. 4 Effects of different slow release fertilizer treatments on total Cd contents in vegetable samplesDifferent lowercase letters above the bars indicate significant differences among different treatments of the same vegetable at the 0.05 probability level.

处理

Treatment

菜薹采收后

After pakchoi harvesting

生菜采收后

After lettuce harvesting

卷心菜采收后

After cabbage harvesting

总镉

Total Cd

有效态镉

Available Cd

总镉

Total Cd

有效态镉

Available Cd

总镉

Total Cd

有效态镉

Available Cd

不施肥 No fertilization (CK)2.67±0.09a0.77±0.03a2.46±0.03a0.51±0.01a2.68±0.31a0.48±0.11a
常规施肥 Conventional fertilization2.67±0.05a0.76±0.01a2.47±0.03a0.50±0.00a2.46±0.32a0.48±0.02a
硫包衣 Sulfur coating2.48±0.14a0.78±0.05a2.11±0.09a0.40±0.01b2.37±0.42a0.41±0.02b
磷包衣 Phosphate coating2.48±0.11a0.72±0.02a2.25±0.17a0.39±0.01b2.34±0.31a0.40±0.05b
矿石粉包衣 Attapulgite coating2.45±0.12a0.74±0.06a2.26±0.30a0.38±0.01b2.29±0.66a0.40±0.02b
Table 3 Contents of soil total Cd and available Cd after harvesting of each crop of vegetables
[1]   国家统计局.中国统计年鉴:2020.北京:中国统计出版社,2020. DOI:10.33896/porj.2020.9
National Bureau of Statistics of China. China Statistical Yearbook: 2020. Beijing: China Statistics Press, 2020. (in Chinese)
doi: 10.33896/porj.2020.9
[2]   张继宁,周胜,孙会峰,等.生物质炭在我国蔬菜地应用的研究现状与展望.农业现代化研究,2018,39(4):543-550. DOI:10.13872/j.1000-0275.2018.0049
ZHANG J N, ZHOU S, SUN H F, et al. Research progress and prospects on the biochar’s application in Chinese vegetable field. Research of Agricultural Modernization, 2018,39(4):543-550. (in Chinese with English abstract)
doi: 10.13872/j.1000-0275.2018.0049
[3]   ZHUANG M H, LAM S K, ZHANG J, et al. Effect of full substituting compound fertilizer with different organic manure on reactive nitrogen losses and crop productivity in intensive vegetable production system of China. Journal of Environmental Management, 2019,243:381-384. DOI:10.1016/j.jenvman.2019.05.026
doi: 10
[4]   曹兵,贺发云,徐秋明,等.露地蔬菜的氮肥效应与氮素去向.核农学报,2008,22(3):343-347. DOI:10.3724/SP.J.1148.2008.00259
CAO B, HE F Y, XU Q M, et al. Nitrogen use efficiency and fate of N fertilizers applied to open field vegetables. Journal of Nuclear Agricultural Sciences, 2008,22(3):343-347. (in Chinese with English abstract)
doi: 10.3724/SP.J.1148.2008.00259
[5]   MIN J, SHI W M. Nitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control it. Science of the Total Environment, 2018,613/614:123-130. DOI:10.1016/j.scitotenv.2017.09.079
doi: 10.1016/j.scitotenv.2017.09.079
[6]   郑少文,郭智,王子臣,等.太湖流域典型蔬菜地氮素径流流失特征.水土保持学报,2014,28(3):204-208. DOI:10.13870/j.cnki.stbcxb.2014.03.037
ZHENG S W, GUO Z, WANG Z C, et al. Characteristics of nitrogen losses by surface runoff in the typical vegetable field of Taihu Lake Basin. Journal of Soil and Water Conservation, 2014,28(3):204-208. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2014.03.037
[7]   NORTON G J, DEACON C M, MESTROT A, et al. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK. Science of the Total Environment, 2015,533:520-527. DOI:10.1016/j.scitotenv.2015.06.130
doi: 10.1016/j.scitotenv.2015.06.130
[8]   王林,徐应明,梁学峰,等.生物炭和鸡粪对镉低积累油菜吸收镉的影响.中国环境科学,2014,34(11):2851-2858. DOI:10.3969/j.issn.1000-6923.2014.11.022
WANG L, XU Y M, LIANG X F, et al. Effects of biochar and chicken manure on cadmium uptake in pakchoi cultivars with low cadmium accumulation. China Environmental Science, 2014,34(11):2851-2858. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6923.2014.11.022
[9]   程家丽,任硕,刘婷婷,等.2001—2017年我国部分地区蔬菜中砷和重金属累积特征及膳食暴露风险.中国食品卫生杂志,2018,30(2):187-193. DOI:10.13590/j.cjfh.2018.02.013
CHENG J L, REN S, LIU T T, et al. Accumulation and dietary exposure risk of arsenic and heavy metals in the vegetables from some areas of China, 2001—2017. Chinese Journal of Food Hygiene, 2018,30(2):187-193. (in Chinese with English abstract)
doi: 10.13590/j.cjfh.2018.02.013
[10]   孙凯宁,王克安,杨宁,等.轮作模式下设施菜地主要重金属元素空间分布特征.山东农业科学,2016,48(11):81-84. DOI:10.14083/j.issn.1001-4942.2016.11.019
SUN K N, WANG K A, YANG N, et al. Spatial distribution features of main heavy metal elements in greenhouse soil under rotation mode. Shandong Agricultural Sciences, 2016,48(11):81-84. (in Chinese with English abstract)
doi: 10.14083/j.issn.1001-4942.2016.11.019
[11]   PURNOMO C W, SAPUTRA H. Chapter 6: Manufacturing of slow and controlled release fertilizer. Controlled Release Fertilizer for Sustainable Agriculture. Amsterdam, the Netherlands: Elsevier, 2021:95-110. DOI:10.1016/B978-0-12-819555-0.00006-6
doi: 10.1016/B978-0-12-819555-0.00006-6
[12]   全国肥料和土壤调理剂标准化技术委员会.缓释肥料: GB/T 23348—2009.北京:中国标准出版社,2009. DOI:10.5594/m001326
National Technical Committee105on Fertilizers and Soil Conditioners of Standardization Administration of China. Slow Release Fertilizer: GB/T 23348—2009. Beijing: Standards Press of China, 2009. (in Chinese)
doi: 10.5594/m001326
[13]   田发祥,纪雄辉,谢运河,等.碱性缓释肥对水稻吸收积累Cd的影响.农业环境科学学报,2016,35(11):2116-2122. DOI:10.11654/jaes.2016-0381
TIAN F X, JI X H, XIE Y H, et al. Alkaline slow-release fertilizer decreased rice Cd uptake at Cd-contaminated paddy fields. Journal of Agro-Environment Science, 2016,35(11):2116-2122. (in Chinese with English abstract)
doi: 10.11654/jaes.2016-0381
[14]   周华敏,陈宝成,王晓琪,等.脲醛缓释肥不同配比对小麦生长及土壤氮素养分的影响.水土保持学报,2017,31(1):179-185. DOI:10.13870/j.cnki.stbcxb.2017.01.03
ZHOU H M, CHEN B C, WANG X Q, et al. Effect of different proportions of urea formaldehyde slow-release nitrogen fertilization on wheat growth and soil nitrogen nutrients. Journal of Soil and Water Conservation, 2017,31(1):179-185. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2017.01.03
[15]   肖强,徐秋明,衣文平,等.不同灌溉量下微水溶性缓释肥料在春玉米的肥效及环境效应研究.核农学报,2012,26(6):930-935. DOI:10.11869/hnxb.2012.06.0930
XIAO Q, XU Q M, YI W P, et al. Study of slightly-water-soluble slow-release fertilizer on spring corn and environment effect under the condition of different irrigation amount. Journal of Nuclear Agricultural Sciences, 2012,26(6):930-935. (in Chinese with English abstract)
doi: 10.11869/hnxb.2012.06.0930
[16]   丁志磊,祖艳群,陈建军,等.滇池流域2种坡耕地农林复合系统的地表径流、泥沙输出及径流N、P流失的特征.环境工程学报,2015,9(11):5301-5307. DOI:10.12030/j.cjee.20151127
DING Z L, ZU Y Q, CHEN J J, et al. Characteristics of surface runoff, sediment, N and P losses from two agro-forest plantation patterns in Dianchi Basin. Chinese Journal of Environmental Engineering, 2015,9(11):5301-5307. (in Chinese with English abstract)
doi: 10.12030/j.cjee.20151127
[17]   邓美华,朱有为,段丽丽,等.农田土壤重金属污染“边生产边修复”综合防治技术模式解析.浙江大学学报(农业与生命科学版),2020,46(2):135-150. DOI:10.3785/j.issn.1008-9209.2019.07.051
DENG M H, ZHU Y W, DUAN L L, et al. Analysis on integrated remediation model of “phytoremediation coupled with agro-production” for heavy metal pollution in farmland soil. Journal of Zhejiang University (Agriculture and Life Sciences), 2020,46(2):135-150. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.07.051
[18]   FERTAHI S, ILSOUL M, ZEROUAL Y, et al. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. Journal of Controlled Release, 2021,330(10):341-361. DOI:10.1016/j.jconrel.2020.12.026
doi: 10.1016/j.jconrel.2020.12.026
[19]   DE BARROS SYLVESTRE T B, BRAOS L B, FILHO F B, et al. Mineral nitrogen fertilization effects on lettuce crop yield and nitrogen leaching. Scientia Horticulturae, 2019,255:153-160. DOI:10.1016/j.scienta.2019.05.032
doi: 10.1016/j.scienta.2019.05.032
[20]   HUANG L K, WANG Q, ZHOU Q Y, et al. Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environmental Pollution, 2020,264:114677. DOI:10.1016/j.envpol.2020.114677
doi: 10.1016/j.envpol.2020.114677
[21]   KEENEY D, NELSON D. Nitrogen-inorganic forms//PAGE A L. Methods of Soil Analysis: Part 2. Madison, U.S.: Soil Science Society of America, 1982:643-698. DOI:10.2134/agronmonogr9.2.2ed.c33
doi: 10.2134/agronmonogr9.2.2ed.c33
[22]   YE H M, LI H F, WANG C S, et al. Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: performance and mechanism. Chemical Engineering Journal, 2020,381:122704. DOI:10.1016/j.cej.2019.122704
doi: 10.1016/j.cej.2019.122704
[23]   郑卫红,潘国祥,陈伽,等.非金属矿物-EC复合包膜尿素缓释肥制备与释放特征.矿物学报,2016,36(2):247-252. DOI:10.16461/j.cnki.1000-4734.2016.02.012
ZHENG W H, PAN G X, CHEN J, et al. Study on preparation and slow-release properties of coated urea fertilizer by using non-metallic minerals and ethylcellulose. Acta Mineralogica Sinica, 2016,36(2):247-252. (in Chinese with English abstract)
doi: 10.16461/j.cnki.1000-4734.2016.02.012
[24]   LI Y M, SUN Y X, LIAO S Q, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agricultural Water Management, 2017,186(31):139-146. DOI:10.1016/j.agwat.2017.02.006
doi: 10.1016/j.agwat.2017.02.006
[25]   窦韦强,安毅,秦莉,等.土壤pH对镉形态影响的研究进展.土壤,2020,52(3):439-444. DOI:10.13758/j.cnki.tr.2020.03.002
DOU W Q, AN Y, QIN L, et al. Advances in effects of soil pH on cadmium form. Soils, 2020,52(3):439-444. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2020.03.002
[26]   FILIPOVI? L, ROMI? M, ROMI? D, et al. Organic matter and salinity modify cadmium soil (phyto) availability. Eco-toxicology and Environmental Safety, 2018,147:824-831. DOI:10.1016/j.ecoenv.2017.09.041
doi: 10.1016/j.ecoenv.2017.09.041
[27]   邹茸,王秀斌,迟克宇,等.不同品种硫肥对苋菜镉累积的影响.农业环境科学学报,2018,37(10):2135-2141. DOI:10.11654/jaes.2018-0164
ZOU R, WANG X B, CHI K Y, et al. Effects of different sulfur fertilizers on cadmium accumulation in Amaranshus mangostanus L. Journal of Agro-Environment Science, 2018,37(10):2135-2141. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-0164
[28]   LI Y Q, GUO P Y, LIU Y J, et al. Effects of sulfur on the toxicity of cadmium to Folsomia candida in red earth and paddy soil in southern Fujian. Journal of Hazardous Materials, 2020,387(5):121683. DOI:10.1016/j.jhazmat.2019.121683
doi: 10.1016/j.jhazmat.2019.121683
[29]   HUANG Y F, CHEN J H, ZHANG D R. Enhanced vacuole compartmentalization of cadmium in root cells contributes to glutathione-induced reduction of cadmium translocation from roots to shoots in pakchoi (Brassica chinensis L.). Ecotoxicology and Environmental Safety, 2021,208:111616. DOI:10.1016/j.ecoenv.2020.111616
doi: 10.1016/j.ecoenv.2020.111616
[30]   BASHIR S, ZHU J, FU Q L, et al. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere, 2018,194:579-587. DOI:10.1016/j.chemosphere.2017.11.162
doi: 10.1016/j.chemosphere.2017.11.162
[31]   LIANG X F, LI N, HE L Z, et al. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite. Science of the Total Environment, 2019,688:818-828. DOI:10.1016/j.scitotenv.2019.06.335
doi: 10.1016/j.scitotenv.2019.06.335
[32]   孟媛,张亮,王林权,等.复合污染土壤上几种叶类蔬菜对Cd和As的富集效应.植物营养与肥料学报,2019,25(6):972-981. DOI:10.11674/zwyf.18277
MENG Y, ZHANG L, WANG L Q, et al. Cd and As accumulation of several leafy vegetables in soils contaminated by combined heavy metal. Journal of Plant Nutrition and Fertilizers, 2019,25(6):972-981. (in Chinese with English abstract)
doi: 10.11674/zwyf.18277
[33]   任艳军,任学军,马建军,等.Cd/Cr复合胁迫下不同品种蔬菜对Cd和Cr积累与转运的差异研究.核农学报,2018,32(5):993-1002. DOI:10.11869/j.issn.100-8551.2018.05.0993
REN Y J, REN X J, MA J J, et al. Study on the variety difference of Cd and Cr accumulation and translocation in vegetable under Cd/Cr combination stress. Journal of Nuclear Agricultural Sciences, 2018,32(5):993-1002. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2018.05.0993
[34]   陈玉鹏,梁东丽,刘中华,等.大棚蔬菜土壤重金属污染及其控制的研究进展与展望.农业环境科学学报,2018,37(1):9-17. DOI:10.11654/jaes.2017-1070
CHEN Y P, LIANG D L, LIU Z H, et al. Analysis of present situation and control of heavy metal pollution in vegetable greenhouse soils. Journal of Agro-Environment Science, 2018,37(1):9-17. (in Chinese with English abstract)
doi: 10.11654/jaes.2017-1070
[1] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[2] Shuang ZHANG,Mingkui ZHANG. Cadmium accumulation in soils developed from limestone and leaching characteristics of cadmium during development of the soils in western Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 591-598.
[3] Jinping CAO,Yezhi CHEN,Cui SUN,Yue WANG,Kunsong CHEN,Changfeng ZHANG,Chongde SUN. Development status of the technology supporting system for local commoditization of fruits and vegetables in China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 1-7.
[4] Xiaoyun LIU,Yong XU,Shiping TIAN,Tong CHEN. Progress on application of secondary metabolites from bamboo in controlling diseases and keeping freshness of fruits and vegetables[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 17-26.
[5] Yan LIU,Xinqi ZHOU,Xiaofeng YU,Yongqiang LI,Shuanglai HAN. Research progress of nondestructive testing techniques for fruit and vegetable quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 27-37.
[6] Ze LIANG,Lei WANG,Mingyi YANG,Zisheng LUO,Yanqun XU,Li LI. Status and progress in quantitative proteomic study of postharvest fruits and vegetables during commercial treatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 8-16.
[7] Long MENG,Tuhai HUANG,Jian CHEN,Fulin ZHONG,Jiachun SHI,Jianming XU. Safe utilization of farmland soil with cadmium pollution: strategies and deliberations.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 263-271.
[8] Zhennan YE,Fei’er WANG,Lingye JI,Jie YU. Agricultural production structure adjustment based on a multi-objective control in the Tiaoxi watershed[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 66-74.
[9] LIU Mengqi, ZHANG Guanglu, GUO Changquan, YANG Tingyu, MI Yuling. Attenuating effect of taurine on oxidative damage and Nrf2/HO-1 pathway induced by cadmium in testicular cells of embryonic chickens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 619-628.
[10] MA Guang. Design of air-aspiration drum type tray precision seeding streamline[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 476-480.
[11] WANG Mengyu, YUAN Wenxin, MIAO Huiying, WANG Bingliang, WANG Qiaomei. Effects of different postharvest treatments on glucosinolate metabolism and nutritional quality in Brassica vegetables: A review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 269-274.
[12] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, ZHANG Xin, HUANG Yuqing, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider . Effects of zinc and silicon on cadmium toxicity and mineral element translocation in two rice (Oryza sativa) genotypes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 294-310.
[13] HE Xiaolin, GUAN Meiyan, FAN Shikai, HE Hu, JIN Chongwei. Prevention of Cd accumulation in plants by mineral nutrients: From mechanisms to applications[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 747-756.
[14] HU Chunqin, LI Rui, HONG Chunlai, CAO Wenting, LIU Jiawei, ZHOU Jun, WENG Huanxin. Enhancement effects of seaweed iodine fertilizer application on the iodine contents of rice, vegetables and fruits in the field[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 552-560.
[15] DAI Zou, YU Huaqing, GUO Changchun, MA Jun, LI Na, YANG Zhiyuan, XU Hui, SUN Yongjian. Effects of Na2SeO3 and Na2SiO3 on Cd uptake and accumulation in two different rice (Oryza Sativa L.) cultivars at jointing stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 441-450.