Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (3): 269-278    DOI: 10.3785/j.issn.1008-9209.2021.05.171
Reviews     
Effects of globa l warming on insect natural enemies
Yueliang BAI1,2(),Wenwu ZHOU1,2,Zengrong ZHU1,2()
1.Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University/Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Hangzhou 310058, China
2.Hainan Institute of Zhejiang University, Sanya 572000, Hainan, China
Download: HTML   HTML (   PDF(1295KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

With climate change, global temperatures are expected to rise, posing a pervasive and growing threat to biodiversity and ecosystem stability. As ectotherms, insects are completely dependent on environmental temperature to grow, develop, and regulate various physiological functions. Therefore, global warming is likely to have direct or indirect effects on insect individuals, populations, and their associated communities and food webs. However, many studies have suggested that the species at higher trophic levels seem to be more sensitive to changes in environmental factors, meaning that predators and parasitoids may face more severe challenges than their prey or hosts. In this paper, we analyzed the effects of temperature changes on the development, reproduction, predation and parasitism of insect natural enemies based on existing studies, compared the responses of the same species (different natural enemy species) and different trophic level species (natural enemy and its host or prey) to temperature increase, and summarized the synchronicity changes between natural enemies and pests caused by global warming. Understanding the response of insect predators and parasitoids to temperature rise is of great significance for biological control and ecological governance of agricultural pests in a warming climate.



Key wordsglobal warming      insect natural enemy      biological control      functional response      interspecific relationship     
Received: 17 May 2021      Published: 25 June 2022
CLC:  S 435  
Corresponding Authors: Zengrong ZHU     E-mail: ylbai@zju.edu.cn;zrzhu@zju.edu.cn
Cite this article:

Yueliang BAI,Wenwu ZHOU,Zengrong ZHU. Effects of globa l warming on insect natural enemies. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 269-278.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.05.171     OR     https://www.zjujournals.com/agr/Y2022/V48/I3/269


气候变暖对天敌昆虫的影响

随着气候变化,预计全球温度将持续上升,这无疑会严重威胁生物多样性以及生态系统稳定性。作为变温动物,昆虫完全依赖外界温度完成生长发育以及各种生理活动,因此气候变暖很可能通过多种方式对昆虫个体、种群及其所在群落、食物网造成直接或间接的影响。但很多研究认为处于更高营养级的物种似乎对环境因子的变化更加敏感,这意味着捕食或寄生性天敌可能比其猎物或寄主面临更严峻的挑战。根据已有研究,本文分析了温度变化对天敌昆虫的生长发育、繁殖、捕食和寄生的影响,比较了相同物种(不同天敌物种)及不同营养级物种(天敌与其寄主或猎物)对温度升高的响应差异,归纳了气候变暖可能引起的天敌与害虫之间的同步性改变问题。总之,深入了解捕食和寄生性昆虫对气温上升的响应,对于气候变暖形势下农业有害生物的生态治理具有重要意义。


关键词: 气候变暖,  天敌昆虫,  生物防治,  功能反应,  种间关系 
Fig. 1 Developmental rate models of insect natural enemies with different temperature adaptations and the herbivorous insects
互作关系 Interaction

天敌昆虫

Insect natural enemy

猎物或寄主昆虫

Prey or host insect

天敌昆虫的响应

Response of insect natural enemy

猎物或寄主的响应

Response of prey or host

对二者互作的影响

Effect on the interaction

文献

Reference

捕食者-猎物

Predator-prey

帝王蜻蜓

Anax imperator

大型溞

Daphnia magna

攻击速度增加防御能力增强天敌捕食成功率 未发生变化25
Notonecta undulata

蚤状溞

Daphnia pulex

游行速度增加,对猎物攻击率增加、处理时间缩短游行速度增加相遇概率增加,天敌捕食成功率下降26
Enallagma annexum相遇概率增加,天敌捕食成功率小幅升高

异色瓢虫

Harmonia axyridis

禾谷缢管蚜

Rhopalosiphum padi

始盛期提前,发生量增加,捕食时间延长,捕食频率提高早期发生量增加物候同步性增强, 天敌的控制力增强,蚜虫后期为害减轻60

七星瓢虫

Coccinellaseptempunctata

龟纹瓢虫

Propylaea japonica

Thanasimusundulatus

红翅大小蠹

Dendroctonusrufipennis

初始迁飞时间提前,总迁飞期延长初始迁飞时间提前, 总迁飞期延长迁飞同步性降低61
Colymbetesdolabratus

黑足伊蚊

Aedes nigripes

日均捕食率升高发育时间缩短,暴露于捕食者的总时长缩短更多伊蚊个体发育至成虫,逃脱了捕食者捕食62

寄生者-寄主

Parasitoid-host

Tetrastichus julis

黑角负泥虫

Oulema melanopus

发育所需积温变化 不大产卵和幼虫发育日期提前,但发育所需积温提高物候同步性下降,天敌寄生率下降48
Cotesia astrarches

红边小灰蝶

Aricia agestis

可在扩张地区继续 寄生寄主地理分布向高纬度扩张扩张地区总寄生率下降,可寄生天敌物种数减少56
Cotesia saltatoria

镶颚姬蜂

Hyposoter notatus

两色脊茧蜂

Aleiodes bicolor

Anisobascingulatellus

毛短尾寄蝇

Aplomya confinis

红边小灰蝶

Aricia agestis

未见在扩张地区寄生寄主地理分布向高纬度扩张扩张地区总寄生率下降,可寄生天敌物种数减少56

缢管蚜茧蜂

Aphidius rhopalosiphi

麦长管蚜

Sitobion avenae

攻击次数下降,攻击准备时间延长防御次数增加相遇次数增加,天敌寄生成功率下降58

阿尔蚜茧蜂

Aphidius ervi

豌豆蚜

Acyrthosiphon pisum

攻击率无变化对寄生蜂的免疫反应被削弱天敌寄生成功率上升59
Cotesia bignellii

金堇蛱蝶

Euphydryas aurinia

发育时间不变发育时间缩短未影响二者物候 同步性63
Table 1 Published "natural enemy-prey/host" response to temperature increasing or global warming
Fig. 2 Effects of global warming on species at different trophic levels, interspecific relationships, and ecosystems
[1]   PACHAURI R K, MAYER L. Climate Change 2014: Synthesis Report[R]. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2014.
[2]   HANSEN J, SATO M, RUEDY R. Perception of climate change[J]. PNAS, 2012, 109(37): E2415-E2423. DOI:10.1073/pnas.1205276109
doi: 10.1073/pnas.1205276109
[3]   BLOIS J L, ZARNETSKE P L, FITZPATRICK M C, et al. Climate change and the past, present, and future of biotic interactions[J]. Science, 2013, 341(6145): 499-504. DOI:10.1126/science.1237184
doi: 10.1126/science.1237184
[4]   VIDAL M C, ANNEBERG T J, CURÉ A E, et al. The variable effects of global change on insect mutualisms[J]. Current Opinion in Insect Science, 2021, 47: 46-52. DOI:10.1016/j.cois.2021.03.002
doi: 10.1016/j.cois.2021.03.002
[5]   SÁNCHEZ-GUILLÉN R A, CÓRDOBA-AGUILAR A, HANSSON B, et al. Evolutionary consequences of climate-induced range shifts in insects[J]. Biological Reviews, 2016, 91(4): 1050-1064. DOI:10.1111/brv.12204
doi: 10.1111/brv.12204
[6]   GONZÁLEZ-TOKMAN D, CÓRDOBA-AGUILAR A, DÁTTILO W, et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world[J]. Biological Reviews, 2020, 95(3): 802-821. DOI:10.1111/brv.12588
doi: 10.1111/brv.12588
[7]   SUTHERST R W, CONSTABLE F, FINLAY K J, et al. Adapting to crop pest and pathogen risks under a changing climate[J]. Wiley Interdisciplinary Reviews—Climate Change, 2011, 2(2): 220-237. DOI:10.1002/wcc.102
doi: 10.1002/wcc.102
[8]   LEHMANN P, AMMUNÉT T, BARTON M, et al. Complex responses of global insect pests to climate warming[J]. Frontiers in Ecology and the Environment, 2020, 18(3): 141-149. DOI:10.1002/fee.2160
doi: 10.1002/fee.2160
[9]   WYCKHUYS K A G, POZSGAI G, LOVEI G L, et al. Global disparity in public awareness of the biological control potential of invertebrates[J]. Science of the Total Environment, 2019, 660: 799-806. DOI:10.1016/j.scitotenv.2019.01.077
doi: 10.1016/j.scitotenv.2019.01.077
[10]   HARDIN M R, BENREY B, COLL M, et al. Arthropod pest resurgence: an overview of potential mechanisms[J]. Crop Protection, 1995, 14(1): 3-18. DOI:10.1016/0261-2194(95)91106-p
doi: 10.1016/0261-2194(95)91106-p
[11]   DAMALAS C A, ELEFTHEROHORINOS I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419. DOI:10.3390/ijerph8051402
doi: 10.3390/ijerph8051402
[12]   LACANNE C E, LUNDGREN J G. Regenerative agriculture: merging farming and natural resource conservation profitably[J]. PeerJ, 2018, 6: e4428. DOI:10.7717/peerj.4428
doi: 10.7717/peerj.4428
[13]   VAN LENTEREN J C, BOLCKMANS K, KÖHL J, et al. Biological control using invertebrates and microorganisms: plenty of new opportunities[J]. BioControl, 2017, 63(1): 39-59. DOI:10.1007/s10526-017-9801-4
doi: 10.1007/s10526-017-9801-4
[14]   MARTÍNEZ-GARCÍA H, SÁENZ-ROMO M G, ARAGÓN-SÁNCHEZ M, et al. Temperature-dependent development of Macrolophus pygmaeus and its applicability to biological control[J]. BioControl, 2017, 62(4): 481-493. DOI:10.1007/s10526-017-9798-8
doi: 10.1007/s10526-017-9798-8
[15]   BARI M N, JAHAN M, ISLAM K S. Effects of temperature on the life table parameters of Trichogramma zahiri (Hymenoptera: Trichogrammatidae), an egg parasitoid of Dicladispa armigera (Chrysomelidae: Coleoptera)‍[J]. Environmental Entomology, 2015, 44(2): 368-378. DOI:10.1093/ee/nvu028
doi: 10.1093/ee/nvu028
[16]   杨忠岐,李孟楼,雷琼,等.温度对花绒寄甲发育和生殖的影响[J].中国生物防治学报,2012,28(1):9-14. DOI:10.16409/j.cnki.2095-039x.2012.01.004
YANG Z Q, LI M L, LEI Q, et al. Effects of temperature on development and reproduction of Dastarcus helophoroides (Coleoptera: Bothrideridae)[J]. Chinese Journal of Biological Control, 2012, 28(1): 9-14. (in Chinese with English abstract)
doi: 10.16409/j.cnki.2095-039x.2012.01.004
[17]   INGEGNO B L, MESSELINK G J, LEMAN A, et al. Development and thermal activity thresholds of European mirid predatory bugs[J]. Biological Control, 2021, 152: 104423. DOI:10.1016/j.biocontrol.2020.104423
doi: 10.1016/j.biocontrol.2020.104423
[18]   HONDO T, KOIKE A, SUGIMOTO T. Comparison of thermal tolerance of seven native species of parasitoids (Hymenoptera: Eulophidae) as biological control agents against Liriomyza trifolii (Diptera: Agromyzidae) in Japan[J]. Applied Entomology and Zoology, 2006, 41(1): 73-82. DOI:10.1303/aez.2006.73
doi: 10.1303/aez.2006.73
[19]   WANG T, KELLER M A, HOGENDOORN K. The effects of temperature on the development, fecundity and mortality of Eretmocerus warrae: Is Eretmocerus warrae better adapted to high temperatures than Encarsia formosa [J]. Pest Management Science, 2019, 75(3): 702-707. DOI:10.1002/ps.5169
doi: 10.1002/ps.5169
[20]   BAI Y L, QUAIS M K, ZHOU W W, et al. Consequences of elevated temperature on the biology, predation, and competitiveness of two mirid predators in the rice ecosystem[J]. Journal of Pest Science, 2021, 95(2): 901-916. DOI:10.1007/s10340-021-01414-y
doi: 10.1007/s10340-021-01414-y
[21]   VOIGT W, PERNER J, DAVIS A J, et al. Trophic levels are differentially sensitive to climate[J]. Ecology, 2003, 84(9): 2444-2453. DOI:10.1890/02-0266
doi: 10.1890/02-0266
[22]   FURLONG M J, ZALUCKI M P. Climate change and biological control: the consequences of increasing temperatures on host-parasitoid interactions[J]. Current Opinion in Insect Science, 2017, 20: 39-44. DOI:10.1016/j.cois.2017.03.006
doi: 10.1016/j.cois.2017.03.006
[23]   韩宗礼,谭晓玲,陈巨莲.环境温度变化对异色瓢虫的飞行与运动能力的影响[J].中国生物防治学报,2017,33(4):433-441. DOI:10.16409/j.cnki.2095-039x.2017.04.001
HAN Z L, TAN X L, CHEN J L. Effect of environmental temperature variations on flight and locomotory behavior of Harmonia axyridis (Coleoptera: Coccinellidae)‍[J]. Chinese Journal of Biological Control, 2017, 33(4): 433-441. (in Chinese with English abstract)
doi: 10.16409/j.cnki.2095-039x.2017.04.001
[24]   JERBI-ELAYED M, LEBDI-GRISSA K, LE GOFF G, et al. Influence of temperature on flight, walking and oviposition capacities of two aphid parasitoid species (Hymenoptera: Aphidiinae)‍[J]. Journal of Insect Behavior, 2015, 28(2): 157-166. DOI:10.1007/s10905-015-9490-8
doi: 10.1007/s10905-015-9490-8
[25]   HERRERA E Q, CASAS J, DANGLES O, et al. Temperature effects on ballistic prey capture by a dragonfly larva[J]. Ecology and Evolution, 2018, 8(8): 4303-4311. DOI:10.1002/ece3.3975
doi: 10.1002/ece3.3975
[26]   TWARDOCHLEB L A, TREAKLE T C, ZARNETSKE P L. Foraging strategy mediates ectotherm predator-prey responses to climate warming[J]. Ecology, 2020, 101(11): e03146. DOI:10.1002/ecy.3146
doi: 10.1002/ecy.3146
[27]   SCHWARZ T, FRANK T. Aphid feeding by lady beetles: higher consumption at higher temperature[J]. BioControl, 2019, 64(3): 323-332. DOI:10.1007/s10526-019-09931-7
doi: 10.1007/s10526-019-09931-7
[28]   林清彩,陈浩,尹园园,等.不同温度对食蚜瘿蚊生长发育和幼虫捕食能力的影响[J].应用昆虫学报,2019,56(1):79-84. DOI:10.7679/j.issn.2095-1353.2019.009
LIN Q C, CHEN H, YIN Y Y, et al. Effects of temperature on the development and predation of Aphidoletes aphidimyza (Rondani) larvae[J]. Chinese Journal of Applied Entomology, 2019, 56(1): 79-84. (in Chinese with English abstract)
doi: 10.7679/j.issn.2095-1353.2019.009
[29]   FRANK T, BRAMBÖCK M. Predatory beetles feed more pest beetles at rising temperature[J]. BMC Ecology, 2016, 16: 21. DOI:10.1186/s12898-016-0076-x
doi: 10.1186/s12898-016-0076-x
[30]   START D, KIRK D, SHEA D, et al. Cannibalism by damselflies increases with rising temperature[J]. Biology Letters, 2017, 13(5): 20170175. DOI:10.1098/rsbl.2017.0175
doi: 10.1098/rsbl.2017.0175
[31]   CRUMRINE P W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius [J]. Aquatic Ecology, 2010, 44(4): 761-770. DOI:‍10.1007/s10452-010-9314-z
doi: ?10.1007/s10452-010-9314-z
[32]   FRANCES D N, MCCAULEY S J. Warming drives higher rates of prey consumption and increases rates of intraguild predation[J]. Oecologia, 2018, 187(3): 585-596. DOI:10.1007/s00442-018-4146-y
doi: 10.1007/s00442-018-4146-y
[33]   HANSEN L S, JENSEN K M V. Effect of temperature on parasitism and host-feeding of Trichogramma turkestanica (Hymenoptera: Trichogrammatidae) on Ephestia kuehniella (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology, 2002, 95(1): 50-56. DOI:10.1603/0022-0493-95.1.50
doi: 10.1603/0022-0493-95.1.50
[34]   MOIROUX J, BRODEUR J, BOIVIN G. Sex ratio variations with temperature in an egg parasitoid: behavioural adjustment and physiological constraint[J]. Animal Behaviour, 2014, 91: 61-66. DOI:10.1016/j.anbehav.2014.02.021
doi: 10.1016/j.anbehav.2014.02.021
[35]   王进强,许丽月,李发昌,等.温度对优雅岐脉跳小蜂出蜂率及性比的影响[J].环境昆虫学报,2019,41(1):161-166. DOI:10.3969/j.issn.1674-0858.2019.01.20
WANG J Q, XU L Y, LI F C, et al. Effect of temperature on emergence rate and sex ratio of Diversinervus elegans Silvestri[J]. Journal of Environmental Entomology, 2019, 41(1): 161-166. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-0858.2019.01.20
[36]   朱亮,葛振泰,宫亚军,等.温度对东亚小花蝽捕食美洲棘蓟马的影响[J].植物保护学报,2015,42(2):229-236. DOI:10.13802/j.cnki.zwbhxb.2015.02.013
ZHU L, GE Z Q, GONG Y J, et al. Effects of temperature on predation of the thrips Echinothrips americanus (Thysanoptera: Thripidae) by the predatory bug Orius sauteri (Heteroptera: Anthocoridae)[J]. Journal of Plant Protection, 2015, 42(2): 229-236. (in Chinese with English abstract)
doi: 10.13802/j.cnki.zwbhxb.2015.02.013
[37]   施祖华,刘树生.温度对菜蛾绒茧蜂功能反应的影响[J].应用生态学报,1999,10(3):332-334. DOI:10.3321/j.issn:1001-9332.1999.03.020
SHI Z H, LIU S S. Influence of temperature on functional response of Cotesia plutellae [J]. Chinese Journal of Applied Ecology, 1999, 10(3): 332-334. (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-9332.1999.03.020
[38]   SONG Y H, HEONG K L. Changes in searching responses with temperature of Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) on the eggs of the brown planthopper, Nilaparvata lugens (Stål.) (Homoptera: Delphacidae)‍[J]. Researches on Population Ecology, 1997, 39(2): 201-206. DOI:10.1007/bf02765266
doi: 10.1007/bf02765266
[39]   ZIAEI MADBOUNI M A, SAMIH M A, NAMVAR P, et al. Temperature-dependent functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to different densities of pupae of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae)[J]. European Journal of Entomology, 2017, 114: 325-331. DOI:10.14411/eje.2017.040
doi: 10.14411/eje.2017.040
[40]   SILVANUNES G DA, TRUZI C C, CARDOSO C P, et al. Temperature-dependent functional response of Euborellia annulipes (Dermaptera: Anisolabididae) preying on Plutella xylostella (Lepidoptera: Plutellidae) larvae[J]. Journal of Thermal ‍Biology, ‍2020, ‍93: ‍102686. ‍DOI:‍10.1016/‍j.‍jtherbio.2020.102686
doi: ?10.1016/?j.?jtherbio.2020.102686
[41]   谢丽娜,董辉,钱海涛,等.不同温度下松毛虫赤眼蜂孤雌产雌品系和两性生殖品系对米蛾卵的寄生功能反应[J].昆虫学报,‍2013,‍56(3):‍263-269. DOI:‍10.16380/j.kcxb.2013.03.007
XIE L N, DONG H, QIAN H T, et al. Functional response of thelytokous and arrhenotokous strains of Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) to eggs of Corcyra cephalonica (Lepidoptera: Pyralidae) at different temperatures[J]. Acta Entomologica Sinica, 2013, 56(3): 263-269. (in Chinese with English abstract)
doi: ?10.16380/j.kcxb.2013.03.007
[42]   FUENTEALBA A, PURESWARAN D, BAUCE E, et al. How does synchrony with host plant affect the performance of an outbreaking insect defoliator[J]. Oecologia, 2017, 184(4): 847-857. DOI:10.1007/s00442-017-3914-4
doi: 10.1007/s00442-017-3914-4
[43]   PAAIJMANS K P, HEINIG R L, SELIGA R A, et al. Temperature variation makes ectotherms more sensitive to climate change[J]. Global Change Biology, 2013, 19(8): 2373-2380. DOI:10.1111/gcb.12240
doi: 10.1111/gcb.12240
[44]   CHEN I C, HILL J K, SHIU H J, et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming[J]. Global Ecology and Biogeography, 2011, 20(1): 34-45. DOI:‍10.1111/j.‍1466-8238.2010.00594.x
doi: ?10.1111/j.?1466-8238.2010.00594.x
[45]   FORREST J R K. Complex responses of insect phenology to climate change[J]. Current Opinion in Insect Science, 2016, 17: 49-54. DOI:10.1016/j.cois.2016.07.002
doi: 10.1016/j.cois.2016.07.002
[46]   GILMAN S E, URBAN M C, TEWKSBURY J, et al. A framework for community interactions under climate change[J]. Trends in Ecology & Evolution, 2010, 25(6): 325-331. DOI:10.1016/j.tree.2010.03.002
doi: 10.1016/j.tree.2010.03.002
[47]   DAMIEN M, TOUGERON K. Prey-predator phenological mismatch under climate change[J]. Current Opinion in Insect Science, 2019, 35: 60-68. DOI:10.1016/j.cois.2019.07.002
doi: 10.1016/j.cois.2019.07.002
[48]   EVANS E W, CARLILE N R, INNES M B, et al. Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch[J]. Journal of Applied Entomology, 2013, 137(5): 383-391. DOI:10.1111/jen.12028
doi: 10.1111/jen.12028
[49]   VAN NOUHUYS S, LEI G C. Parasitoid-host metapopulation dynamics: the causes and consequences of phenological asynchrony[J]. Journal of Animal Ecology, 2004, 73(3): 526-535. DOI:10.1111/j.0021-8790.2004.00827.x
doi: 10.1111/j.0021-8790.2004.00827.x
[50]   CHEN I C, HILL J K, OHLEMÜLLER R, et al. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 2011, 333(6045): 1024-1026. DOI:‍10.1126/science. 1206432
doi: ?10.1126/science. 1206432
[51]   PECL G T, ARAÚJO M B, BELL J D, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being[J]. Science, 2017, 355(6332): eaai9214. DOI:10.1126/science.aai9214
doi: 10.1126/science.aai9214
[52]   THIERRY M, HRČEK J, LEWIS O T. Mechanisms structuring host-parasitoid networks in a global warming context: a review[J]. Ecological Entomology, 2019, 44(5): 581-592. DOI:10.1111/een.12750
doi: 10.1111/een.12750
[53]   MATTILA N, KAITALA V, KOMONEN A, et al. Ecological correlates of distribution change and range shift in butterflies[J]. Insect Conservation and Diversity, 2011, 4(4): 239-246. DOI:10.1111/j.1752-4598.2011.00141.x
doi: 10.1111/j.1752-4598.2011.00141.x
[54]   MARSHALL L, PERDIJK F, DENDONCKER N, et al. Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years[J]. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1938): 20202201. DOI:10.1098/rspb.2020.2201
doi: 10.1098/rspb.2020.2201
[55]   KHARUK V I, IM S T, SOLDATOV V V. Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains[J]. Journal of Mountain Science, 2020, 17(8): 1891-1900. DOI:10.1007/s11629-020-5989-3
doi: 10.1007/s11629-020-5989-3
[56]   MENÉNDEZ R, GONZÁLEZ-MEGÍAS A, LEWIS O T, et al. Escape from natural enemies during climate-driven range expansion: a case study[J]. Ecological Entomology, 2008, 33(3): 413-421. DOI:10.1111/j.1365-2311.2008.00985.x
doi: 10.1111/j.1365-2311.2008.00985.x
[57]   SCHÖNROGGE K, BEGG T, WILLIAMS R, et al. Range expansion and enemy recruitment by eight alien gall wasp species in Britain[J]. Insect Conservation and Diversity, 2011, 5(4): 298-311. DOI:10.1111/j.1752-4598.2011.00161.x
doi: 10.1111/j.1752-4598.2011.00161.x
[58]   LE LANN C, LODI M, ELLERS J. Thermal change alters the outcome of behavioural interactions between antagonistic partners[J]. Ecological Entomology, 2014, 39(5): 578-588. DOI:10.1111/een.12135
doi: 10.1111/een.12135
[59]   BENSADIA F, BOUDREAULT S, GUAY J F, et al. Aphid clonal resistance to a parasitoid fails under heat stress[J]. Journal of Insect Physiology, 2006, 52(2): 146-157. DOI:‍10.1016/j.jinsphys.2005.09.011
doi: ?10.1016/j.jinsphys.2005.09.011
[60]   刘燕强,雷贤富,曾永亮,等.春季气温变暖导致禾谷缢管蚜时段性衰减的原因研究[J].中国植保导刊,2009,29(5):9-11. DOI:10.3969/j.issn.1672-6820.2009.05.002
LIU Y Q, LEI X F, ZENG Y L, et al. Study on periodical reduction of Rhopalosiphum padi resulted from warmer climate in spring[J]. China Plant Protection, 2009, 29(5): 9-11. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-6820.2009.05.002
[61]   DELL I H, DAVIS T S. Effects of site thermal variation and physiography on flight synchrony and phenology of the North American spruce beetle (Coleoptera: Curculionidae, Scolytinae) and associated species in Colorado[J]. Environmental Entomology, 2019, 48(4): 998-1011. DOI:10.1093/ee/nvz067
doi: 10.1093/ee/nvz067
[62]   CULLER L E, AYRES M P, VIRGINIA R A. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1815): 20151549. DOI:10.1098/rspb.2015.1549
doi: 10.1098/rspb.2015.1549
[63]   KLAPWIJK M J, GRÖBLER B C, WARD K, et al. Influence of experimental warming and shading on host-parasitoid synchrony[J]. Global Change Biology, 2010, 16(1): 102-112. DOI:10.1111/j.1365-2486.2009.01918.x
doi: 10.1111/j.1365-2486.2009.01918.x
[64]   LAWS A N. Climate change effects on predator-prey interactions[J]. Current Opinion in Insect Science, 2017, 23: 28-34. DOI:10.1016/j.cois.2017.06.010
doi: 10.1016/j.cois.2017.06.010
[65]   WALTHER G R. Plants in a warmer world[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(3): 169-185.
[1] Jingjing LIU,Yezhou PANG,Jingze ZHANG. Pathogenic differentiation and biological control of Verticillium wilt of eggplant[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 407-417.