Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (4): 407-417    DOI: 10.3785/j.issn.1008-9209.2018.11.262
Plant protection     
Pathogenic differentiation and biological control of Verticillium wilt of eggplant
Jingjing LIU(),Yezhou PANG,Jingze ZHANG()
Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(5640KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Verticilliumwilt of eggplant occurs seriously in some areas of Zhejiang Province. To control the disease effectively, the disease observation and pathogenicity tests of pathogen were carried out, and the pathotype and physiological races of pathogen were identified. Furthermore, inhibitory activity of Paenibacillus polymyxa strains against hypha growth and conidial germination of pathogen were determined, and inoculation assays for controlling Verticillium wilt of eggplant and plant growth promotion were conducted, and volatile metabolites and lipopeptides produced by P. polymyxa strains were analyzed. Results of disease observation and pathogenicity tests indicated that Verticillium wilt of eggplant in greenhouse occurred usually in mid-January, and it was caused by Verticillium dahliae Kleb. Identification results of pathotype and physiological races of pathogen with the representative strains demonstrated that seven isolates from Zhejiang Province all belonged to the defoliation pathotype and physiological race-2, respectively. In vitro experiments showed that the strain ShX301 had a highest inhibitory activity against hypha growth and conidial germination of pathogens isolated the diseased eggplant plants among five P. polymyxa strains. The in vivo experiments for controlling Verticillium wilt of eggplant and plant growth promotion displayed that the strain ShX301 had a highest inhibitory activity. Inoculation by the strain ShX301 reduced disease incidence and severity by 30% and 20.02%, respectively, and promoted eggplant plant growth with enhancing aboveground seedling stem length and biomass by 59.24% and 69.41%, as well as underground biomass by 54.11%, respectively. The determination of volatile metabolites showed that the five strains of P. polymyxa were able to produce volatile metabolites, which inhibited hypha growth of pathogen, but there were no significant differences among the strains. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) analysis revealed that the fusaricidins were main activity compounds of antagonistic pathogen. Therefore, this study provides a scientific theory basis for development of the strain ShX301 as a biocontrol or plant growth promotion agent.



Key wordsPaenibacillus polymyxa      biological control      antagonistic mechanism      volatile compounds      lipopeptides     
Received: 26 November 2018      Published: 17 September 2019
CLC:  S 432.4  
Corresponding Authors: Jingze ZHANG     E-mail: 457771128@qq.com;jzzhang@zju.edu.cn
Cite this article:

Jingjing LIU,Yezhou PANG,Jingze ZHANG. Pathogenic differentiation and biological control of Verticillium wilt of eggplant. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 407-417.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.11.262     OR     http://www.zjujournals.com/agr/Y2019/V45/I4/407


茄子黄萎病病原菌致病型分化及其生物防治

为了有效防治在浙江一些地区严重发生的茄子黄萎病,本文进行了病害观察、病原菌致病性试验、病原菌致病型和生理小种鉴定,测定了多粘类芽孢杆菌对病原菌菌丝和分生孢子萌发的抑制活性,开展了病害生物防治和促生长试验,并测定了多粘类芽孢杆菌产生的挥发性物质和脂肽。病害观察和致病性试验结果表明,茄子黄萎病在浙江温室大棚中于1月中旬发生,由大丽轮枝菌引起。用7个代表性菌株对病原菌致病型和生理小种进行鉴定表明,所有分离系均属于落叶型株系和2号生理小种。用原先筛选的5株多粘类芽孢杆菌对病原菌菌丝和分生孢子萌发进行体外拮抗试验表明,株系ShX301具有最高的抑制活性。体内接种和促生长试验显示,株系ShX301也具有最高的生物活性,接种株系ShX301使病害发病率和病害严重度比率分别减少30%和20.02%,对茄苗的茎长、地上生物量和地下生物量的增长率分别达59.24%、69.41%和54.11%。挥发性物质测定结果表明,5株多粘类芽孢杆菌都能产生挥发性物质,它们对病原菌菌丝生长都具有显著的抑制作用,但株系间没有显著性差异。基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)检测和分析揭示,杀镰孢菌素是拮抗病原菌的主要活性物质。这些研究结果为菌株ShX301作为生防或促生长制剂开发提供了科学理论依据。


关键词: 多粘类芽孢杆菌,  生物防治,  拮抗机制,  挥发性物质,  脂肽 
Fig. 1 Symptoms of Verticillium wilt of eggplant
Fig. 2 Agrose gel eletrophoresis of PCR products of defoliating and nondefoliating pathotype isolates obtained with specific primers
Fig. 3 Agrose gel eletrophoresis of PCR products amplified with race-1 and race-2 specific primers

株系

Strains

生长抑制率1)

PGI1)/%

抑菌圈直径

IZD/mm

ShX301 85.23±0.3a 33.23±0.77a
Hb6 76.52±1.9b 25.33±1.20b
Hb1 70.85±1.7c 23.45±0.61c
ShX302 69.15±1.3cd 15.66±0.67d
ShX303 68.11±0.3d 14.70±1.46d
Table 1 Inhibitory effect of five Paenibacillus polymyxa strains against Verticillium dahliae
Fig. 4 Effect of volatile metabolites produced by five strains of P. polymyxa on hyphal growth of V. dahliae

株系

Strains

发病率

Incidence/%

病害严重度比率1)

Disease severity index1)/%

防治效果2)

Control efficacy2)/%

ShX301 36.67±2.89d 23.17±0.44e 46.36
Hb6 41.67±2.89cd 26.16±0.24d 39.44
Hb1 43.33±2.89c 27.19±1.10d 37.05
ShX302 51.67±2.89b 34.43±0.67c 20.28
ShX303 53.33±5.77b 36.25±2.10b 16.06
CK 66.67±2.89a 43.19±0.20a
Table 2 Inhibitory efficacy of five P. polymyxa strains against Verticillium wilt of eggplant 50 d after inoculation
Fig. 5 Effects of five P. polymyxa strains on the growth promotion of eggplant seedlings 50 d after inoculation

株系

Strains

茎 Stem 根 Root 地上部 Aboveground 地上部 Aboveground 地下部 Underground 地下部 Underground

长度

Length/mm

促生

长率

PD/%

长度Length/

cm

促生

长率

PD/%

鲜质量

Fresh mass/

g

促生

长率

PD/%

干质量

Dry mass/

g

促生

长率

PD/%

鲜质量

Fresh mass/

g

促生

长率

PD/%

干质量

Dry mass/

g

促生

长率

PD/%

ShX301

17.98±

0.85a

59.24

11.07±

0.71d

24.87

10.25±

0.96a

69.41

1.15±

0.19a

96.83

1.06±

0.14a

54.11

0.21±

0.05a

73.33
Hb6

15.25±

1.56b

35.09

12.89±

1.13a

45.38

9.56±

0.85b

58.07

0.86±

0.11b

46.75

0.96±

0.11b

38.51

0.18±

0.02b

44.31
Hb1

14.68±

1.43bc

30.07

11.32±

1.46c

27.61

9.13±

1.06bc

50.97

0.76±

0.14c

28.91

0.79±

0.12c

14.22

0.15±

0.03c

41.96
ShX302

14.61±

1.71bc

29.38

11.92±

1.70b

34.47

8.82±

0.94c

45.80

0.69±

0.13c

18.10

0.81±

0.1c

17.18

0.17±

0.03b

21.96
ShX303

14.16±

1.40c

25.47

11.86±

1.34b

33.79

8.73±

1.04c

44.32

0.71±

0.12c

20.21

0.84±

0.09c

21.88

0.14±

0.03c

16.86
CK

11.29±

0.73d

8.87±

0.60e

6.05±

0.40d

0.59±

0.16d

0.69±

0.07d

0.12±

0.03d

Table 3 Determination results for five P. polymyxa strains promoting eggplant plant growth
Fig. 6 MALDI-TOF-MS analysis of nonribosomal lipopeptides produced by P. polymyxa strains

杀镰孢菌素

Fusaricidins

质荷比m/z AMM 强度 Intensity [a.u.]
ShX301 ShX302 ShX303 Hb1 Hb6
Fusaricidin A 883 [M+H]+ 27 889 51 669 88 927 143 47 821
905 [M+Na]+ 5 560 5 453 4 655 11 633
921 [M+K]+ 19 337
Fusaricidin B 897 [M+H]+ 29 826 64 997 93 385 196 49 006
919 [M+Na]+ 8 434 12 641 6 927 15 589
935 [M+K]+ 10 228 26 640 27 890 27 274
LI-F05b 911 [M+H]+ 6 100 33 006 56 402 2 018 16 388
933 [M+Na]+ 1 053 3 424 3 445
949 [M+K]+ 1 170 6 538 5 632
LI-F08b 925 [M+H]+ 1 109 22 794 35 894 2 063 5 165
947 [M+Na]+ 2 682 30 747 58 057 888 16 271
963 [M+K]+ 5 912 1 951
LI-F07a 931 [M+H]+ 3 415 5 356 17 837 616 9 656
953 [M+Na]+ 526 1 381 540
969 [M+K]+ 4 325
LI-F07b 945 [M+H]+ 3 066 6 796 16 666 574 8 406
967 [M+Na]+ 454 509
983 [M+K]+ 966 3 895 4 801 4 257
Fusaricidin C 947 [M+H]+ 2 682 30 747 58 057 888 16 271
969 [M+Na]+ 4 325
985 [M+K]+ 273 3 607 7 290 3 645
Fusaricidin D 961 [M+H]+ 3 400 37 584 1 075 13 745
983 [M+Na]+ 966 3 895 4 801 4 257
999 [M+K]+ 547 77 113 9 480 4 104
Table 4 Determination results for culture filtrates of P. polymyxa strains by MALDI-TOF-MS
[1]   COLLONNIER C , FOCK I , KASHYAP V , et al . Applications of biotechnology in eggplant. Plant Cell, Tissue and Organ Culture, 2001,65(2):91-107.
[2]   SCHNATHORST W C , MATHRE D E . Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology, 1966,56(10):1155-1161.
[3]   USAMI T , ITOH M , MORII S , et al . Involvement of two different types of Verticillium dahliae in lettuce wilt in Ibaraki Prefecture, Japan. Journal of General Plant Pathology, 2012,78(5):348-352.
[4]   GURUNG S , SHORT D P G , ATALLAH Z K , et al . Clonal expansion of Verticillium dahliae in lettuce. Phytopathology, 2014,104(6):641-649.
[5]   XIAO C L , SUBBARAO K V , SCHULBACH K F , et al . Effects of crop rotation and irrigation on Verticillium dahliae microsclerotia in soil and wilt in cauliflower. Phytopathology, 1998,88(10):1046-1055.
[6]   TALBOYS P W . Chemical control of Verticillium wilts. Phytopathologia Mediterranea, 1984,23(2/3):163-175.
[7]   田黎,王克荣,陆家云 .多菌灵、三环唑对大丽轮枝菌微菌核、黑色素形成及致病力的影响.植物病理学报,1998,28(3):263-268.
TIAN L , WANG K R , LU J Y . Effect of carbendazim and tricyclazole on microsclerotia and melanin formation of Verticillium dahliae . Acta Phytopathologica Sinica, 1998,28(3):263-268. (in Chinese with English abstract)
[8]   G?RE M E , CANER ? K , ALTIN N , et al . Evaluation of cotton cultivars for resistance to pathotypes of Verticillium dahliae . Crop Protection, 2009,28(3):215-219.
[9]   HANSON L E . Reduction of Verticillium wilt symptoms in cotton following seed treatment with Trichoderma virens . Journal of Cotton Science, 2000,4(4):224-231.
[10]   XUE L , GU M Y , XU W L , et al . Antagonistic Streptomyces enhances defense-related responses in cotton for biocontrol of wilt caused by phytotoxin of Verticillium dahliae . Phytoparasitica, 2016,44(2):225-237.
[11]   OHYE D F , MURRELL W G . Formation and structure of the spore of Bacillus coagulans . The Journal of Cell Biology, 1962,14(1):111-123.
[12]   LI C H , SHI L , HAN Q , et al . Biocontrol of Verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate. Journal of Applied Microbiology, 2012,113(3):641-651.
[13]   ZHANG F , LI X L , ZHU S J , et al . Biocontrol potential of Paenibacillus polymyxa against Verticillium dahliae infecting cotton plants. Biological Control, 2018,127:70-77.
[14]   ESSGHAIER B , FARDEAU M L , CAYOL J L , et al . Biological control of grey mould in strawberry fruits by halophilic bacteria. Journal of Applied Microbiology, 2009,106(3):833-846.
[15]   RYBAKOVA D , CERNAVA T , KOEBERL M , et al . Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus . Plant and Soil, 2016,405(1):125-140.
[16]   RYBAKOVA D , RACK-WETZLINGER U , CERNAVA T , et al . Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa . Frontiers in Plant Science, 2017,8:1294.
[17]   DENG Y , LU Z X , LU F X , et al . Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paeni-bacillus polymyxa . Journal of Microbiological Methods, 2011,85(3):175-182.
[18]   LAL S, TABACCHIONI S . Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian Journal of Microbiology, 2009,49(1):2-10.
[19]   COCHRANE S A , VEDERAS J C . Lipopeptides from Bacillus and Paenibacillus spp .: a gold mine of antibiotic candidates. Medicinal Research Reviews, 2016,36(1):4-31.
[20]   孙晓婷,鹿秀云,张敬泽,等 .浙江棉花黄萎病菌致病型菌株的鉴定及高温抑制病害的表征分析.浙江大学学报(农业与生命科学版),2016,42(6):671-678.
SUN X T , LU X Y , ZHANG J Z , et al . Identification of pathotype of Verticillium dahliae isolates on cotton in Zhejiang Province and phenotypic analysis on inhibitory effect by high temperature. Journal of Zhejiang University (Agriculture and Life Sciences), 2016,42(6):671-678. (in Chinese with English abstract)
[21]   BUTTERFIELD E J , DEVAY J E . Reassessment of soil assays for Verticillium dahliae . Phytopathology, 1977,67(8):1073-1078.
[22]   LAN X J , ZHANG J , ZONG Z F , et al . Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant. BioMed Research International, 2017(2):1-8.
[23]   VATER J , NIU B , DIETEL K , et al . Characterization of novel fusaricidins produced by Paenibacillus polymyxa-M1 using MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry, 2015,26(9):1548-1558.
[24]   VATER J , HERFORT S , DOELLINGER J , et al . Genome mining of the lipopeptide biosynthesis of Paenibacillus polymyxa E681 in combination with mass spectrometry: discovery of the lipoheptapeptide paenilipoheptin. Chem-BioChem, 2018,19(7):744-753.
[25]   COCHRANE S A , FINDLAY B , BAKHTIARY A , et al . Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid Ⅱ. Proceedings of the National Academy of Sciences of the USA, 2016,113(41):11561-11566.
[26]   POIREL L , JAYOL A , NORDMANN P . Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical Microbiology Reviews, 2017,30(2):557-596.
[27]   COCHRANE S A , LOHANS C T , BELKUM M J VAN , et al . Studies on tridecaptin B1, a lipopeptide with activity against multidrug resistant Gram-negative bacteria. Organic & Biomolecular Chemistry, 2015,13(21):6073-6081.
[28]   RYU J, KIM J M , LEE C W, et al . Structural analysis and enhanced production of fusaricidin from Paenibacillus kribbensis CU01 isolated from yellow loess. Journal of Basic Microbiology, 2017,57(6):525-535.
[29]   KURUSU K , OHBA K , ARAI T , et al . New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa Ⅰ.Isolation and characterization. The Journal of Antibiotics, 1987,40(11):1506-1514.
[30]   BEATTY P H , JENSEN S E . Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 2002,48(2):159-169.
[31]   RAZA W , YANG X M , WU H S , et al . Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp.nevium. European Journal of Plant Pathology, 2009,125(3):471-483.
[1] WEN Xuewei, CHEN Yangyang, WU Bin, HU Dongwei, LIANG Wusheng. Screening of acetolactate synthase inhibitors against Sclerotinia sclerotiorum for the purpose of controlling rapeseed Sclerotinia disease[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 589-598.
[2] ZHANG Yuanyuan, ZHANG Gui, ZHANG Jian, ZHANG Guang, ZHOU Hongyou, ZHAO Jun(. Cross pathogenicity of Verticillium spp. isolated from different hosts[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 483-492.
[3] ZHU Hongxue, TIAN Zhongling, CAI Ruihang, LI Xiaolin, ZHENG Jingwu. Heterodera koreana, a new record of cyst-forming nematodes in Zhejiang Province, China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 81-88.
[4] Qiao Tianmin, Zhang Jing, Ma Wenjian, Zhu Tianhui, Zheng Lei. Development and application of nested polymerase chain reaction for rapid detection of Cylindrocladium scoparium on Eucalyptus. 
 
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(5): 497-504.
[5] Ma Wenjian, Zheng Lei, Zhang Jing, Liu Yang, Zhu Tianhui. Development of nested-PCR for detection of Cryphonectria parasitica based on the marker of sequence characterized amplified region[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 25-33.
[6] Du Ruiqing, Lin Shanhai,Huang Siliang, Zhang Zhengtian, Qin Liping, Li Qiqin . Statistical analysis of carbon and nitrogen sources for growth and sporulation of Exserohilum rostratum causing banana leaf spot disease[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 64-74.
[7] . Morphological and molecular characterization of Trichodorus nanjingensis populations occurring in Zhejiang and Beijing, China  [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 542-550.
[8] . Morphological and molecular characterization of cystforming nematodes on wheat from Shanxi Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 566-574.