Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (6): 729-735    DOI: 10.3785/j.issn.1008-9209.2021.05.112
Research articles     
Accumulation and change rules of polymethoxylated flavones in different tissues of mandarin
Tong WANG1(),Zimao YE1,Mengyu LIU1,Wanxia SHEN1,2,Xiaochun ZHAO1,2()
1.Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
2.National Citrus Engineering Research Center, Chongqing 400712, China
Download: HTML   HTML (   PDF(2402KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyze the distribution and the regulation of polymethoxylated flavone (PMF) accumulation in the peel, pulp and leaf of mandarins among different genotypes and tissues, contents of five PMFs were determined by high performance liquid chromatography (HPLC) in the peel, pulp and leaf of 39 mandarin germplasms. The results showed that the contents of PMFs significantly varied among the different mandarin germplasms. In the 39 mandarins, contents of total PMFs in peel ranged from 15.81 to 3 660.94 mg/kg (calculated by fresh mass and the same below), and they in pulp ranged from 5.71 to 27.67 mg/kg, and they in leaf varied from 97.14 to 8 476.15 mg/kg, indicating that accumulation of PMFs was genotype specific. The contents of PMFs in different tissues of the same germplasm were also significantly different. The order of average total contents of PMFs was leaf>peel>pulp. The contents of PMFs among the tissues in different genotypes showed highly significant positive correlations, indicating that the genetic regulation on PMF accumulation in different tissues was similar. The compositions of PMFs in different tissues were different. In the peel, nobiletin contents were the highest of the total PMFs, while tangeretin contents were the highest in the pulp and leaf. Both nobiletin and tangeretin were the main PMFs in the 39 mandarins. The above results lay a foundation for further research on the genetic regulation of PMF biosynthesis and genetic improvement of citrus nutrients.



Key wordsmandarin      polymethoxylated flavone      high performance liquid chromatography      correlation analysis     
Received: 11 May 2021      Published: 25 December 2021
CLC:  S 666.2  
Corresponding Authors: Xiaochun ZHAO     E-mail: wangtongfighting@163.com;zhaoxiaochun@cric.cn
Cite this article:

Tong WANG,Zimao YE,Mengyu LIU,Wanxia SHEN,Xiaochun ZHAO. Accumulation and change rules of polymethoxylated flavones in different tissues of mandarin. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 729-735.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.05.112     OR     http://www.zjujournals.com/agr/Y2021/V47/I6/729


多甲氧基黄酮在不同宽皮柑橘品种组织中的积累变化规律

为探究多甲氧基黄酮(polymethoxylated flavone, PMF)在宽皮柑橘果皮、果肉、叶片中的分布情况,利用高效液相色谱(high performance liquid chromatography, HPLC)对39份宽皮柑橘种质果皮、果肉、叶片中5种多甲氧基黄酮(PMFs)进行定量检测,分析其在不同种质中种类与含量的变化特征。结果显示,PMFs含量在不同种质间有显著差异。39份材料的果皮中总PMFs质量分数变化范围为15.81~3 660.94 mg/kg(以鲜质量计,下同),果肉中总PMFs质量分数变化范围为5.71~27.67 mg/kg,叶片中总PMFs质量分数变化范围为97.14~8 476.15 mg/kg,表明PMFs的合成及积累具有明显的种质特异性。同一种质不同组织中的PMFs含量也有明显差异,总PMFs平均含量为叶片>果皮>果肉;不同种质中3个组织的PMFs含量变化规律一致,各组织之间呈极显著的正相关关系。不同组织中PMFs化合物的组成也有差异,果皮中川陈皮素的含量最高,果肉、叶片中橘皮素的含量最高,说明川陈皮素和橘皮素是宽皮柑橘中最主要的PMFs。上述结果可为进一步研究PMFs生物合成的遗传调控及柑橘营养成分的遗传改良奠定基础。


关键词: 宽皮柑橘,  多甲氧基黄酮,  高效液相色谱,  相关性分析 

编号

Code

品种名

Name of variety

原产地

Origin

编号

Code

品种名

Name of variety

原产地

Origin

1湘慈43号 Xiangci No. 43中国(湖南长沙)21鹅蛋香柑 Edan Xianggan中国(重庆江津)
2

克里曼丁(波娜)

Clementine Bernard S.R.A 65

法国22

兴义大红袍

Xingyi Dahongpao

中国(贵州兴义)
3扁橘78-7 Shikuwasha 78-7日本(冲绳)23粗皮狗屎柑 Cupi Goushigan中国(重庆合川)
4油皮橘 Yuhikitsu中国24朱砂柑 Zhushagan中国(广西贺州)
5皇帝柑 Emperor mandarin澳大利亚25和平92号红橘 Heping No. 92 Hongju中国(重庆巴南)
6大津4号 Ootsu No. 4 unshu日本26蜂洞橘 Fengdong ponkan中国(云南石屏)
7象引15号 Xiangyin No. 15日本27曼谷橘 Manguju尼泊尔
8青岛温州 Aoshima unshu日本28聂都野橘2号 Niedu Yeju No. 2中国(江西聂都)
9津之香 Tsunokaori tangor日本29凯旋柑 Kaixuangan中国(浙江黄岩)
10扁柑 Biangan中国(广西柳州)30晚蜜1号 Wanmi No. 1中国(重庆北碚)
11城固冰糖橘 Chenggu Bingtangju中国(陕西城固)31本地早橘 Bendizaoju中国(浙江黄岩)
12春见 Harumi日本32春香 Haruka日本
13晚蜜2号 Wanmi No. 2中国(重庆北碚)33诺瓦橘 Nova mandarin美国
14专有橘 Parson’s special美国34古田中熟温州 Furuta wase日本
15埃及橘 Egypt mandarin埃及35久贺早生 Kuga wase unshu日本
16天草 Amakusa日本36北口温州 Kitaguchi wase unshu日本
17橘子 Juzi中国(湖南张家界)37佐贺橘 Saga mandarin日本
18白驹福橘 Baiju Fuju中国(江苏白驹)38寿太郎温州蜜柑 Judaro unshu日本
19秋辉红 Qiuhuihong中国(重庆北碚)39盛田温州 Morita unshu日本
20口之津15号 Kuchinotsu No. 15日本
Table 1 Mandarin germplasm materials used in this study

流动相体积比

Mobile phase

volume ratio/%

洗脱时间 Elution time/min
05102530

0.2%乙酸溶液

0.2% acetic acid solution

9070202090
甲醇 Methanol1030808010
Table 2 Gradient elution program of the mobile phase
Fig. 1 High performance liquid chromatography of five PMF standards at 330 nm wavelength1: Sinensetin; 2: Nobiletin; 3: Demethylnobiletin; 4: Tangeretin; 5: Gardenin B.
Fig. 2 Heat map of cluster analysis of polymethoxylated flavone contents in the peel of mandarinsPlease see the Table 1 for the details of varieties represented by the numbers in the figure.
Fig. 3 Heat map of cluster analysis of polymethoxylated flavone contents in the pulp of mandarinsPlease see the Table 1 for the details of varieties represented by the numbers in the figure.
Fig. 4 Heat map of cluster analysis of polymethoxylated flavone contents in the leaf of mandarinsPlease see the Table 1 for the details of varieties represented by the numbers in the figure.
Fig. 5 Heat map of cluster analysis of polymethoxylated flavone contents in peel, pulp and leafPlease see the Table 1 for the details of varieties represented by the numbers in the figure.

参量

Parameter

果皮

Peel

果肉

Pulp

叶片

Leaf

果皮 Peel1.0000.926**0.667**
果肉 Pulp0.926**1.0000.681**
叶片 Leaf0.667**0.681**1.000
Table 3 Correlation analysis of the contents of polymetho-xylated flavones in peel, pulp and leaf
[1]   MARTIN J L, McMILLAN F M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Current Opinion in Structural Biology, 2002,12(6):783-793. DOI:10.1016/S0959-440X(02)00391-3
doi: 10.1016/S0959-440X(02)00391-3
[2]   单杨,李高阳,李忠海.柑橘皮中多甲氧基黄酮的体外抗氧化活性研究.食品科学,2007(8):100-103. DOI:10.3321/j.issn:1002-6630.2007.08.020
SHAN Y, LI G Y, LI Z H. In vitro antioxidant activity of multimethoxyl flavonoids from citrus peel. Food Science, 2007(8):100-103. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-6630.2007.08.020
[3]   李娜.陈皮多甲氧基黄酮抗肿瘤作用及其机理研究.北京:北京中医药大学,2007. DOI:10.5152/tjg.2020.19656
LI N. Study on antitumor effect and mechanism of polymethoxy flavonoids from tangerine peel. Beijing: Beijing University of Chinese Medicine, 2007. (in Chinese with English abstract)
doi: 10.5152/tjg.2020.19656
[4]   MANTHE J A, BENDELE P. Anti-inflammatory activity of an orange peel polymethoxylated flavone, 3′, 4′, 3, 5, 6, 7, 8-heptamethoxyflavone, in the rat carrageenan/paw edema and mouse lipopolysaccharide-challenge assays. Journal of Agricultural and Food Chemistry, 2008,56(20):9399-9403. DOI:10.1021/jf801222h
doi: 10.1021/jf801222h
[5]   TUNG Y C, CHANG W T, LI S M, et al. Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity. Food & Function, 2018,9(6):3363-3373. DOI:10.1039/C7FO02066J
doi: 10.1039/C7FO02066J
[6]   PAN G G, KILMARTIN P A, SMITH B G, et al. Detection of orange juice adulteration by tangelo juice using multivariate analysis of polymethoxylated flavones and carotenoids. Science of Food and Agriculture, 2002,82(4):421-427. DOI:10.1002/jsfa.1051
doi: 10.1002/jsfa.1051
[7]   ESCRICHE I, KADAR M, JUAN-BORRáS M, et al. Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Research International, 2011,44(5):1504-1513. DOI:10.1016/j.foodres.2011.03.049
doi: 10.1016/j.foodres.2011.03.049
[8]   吴桂苹.柑桔果实主要类黄酮成分检测及含量分析.重庆:西南大学,2007.
WU G P. Determination and characteristic of flavonoids in citrus fruits of different species. Chongqing: Southwest University, 2007. (in Chinese with English abstract)
[9]   冉玥,焦必宁,赵其阳,等.超高效液相色谱法同时测定柑橘中11种类黄酮物质.食品科学,2013,34(4):168-172.
RAN Y, JIAO B N, ZHAO Q Y, et al. Simultaneous determination of 11 flavonoids incitrus fruits by ultra-performance liquid chromatography. Food Science, 2013,34(4):168-172. (in Chinese with English abstract)
[10]   刘贤青,涂虹,王守创,等.不同类型柑橘果实汁胞中类黄酮的液相色谱质谱联用分析.植物生理学报,2016,52(5):762-770. DOI:10.13592/j.cnki.ppj.2016.0120
LIU X Q, TU H, WANG S C, et al. Flavonoid composition of Citrus juice sacs determined by high-performance liquid chromatography coupled with tandem electrospray ionization mass spectrometry. Plant Physiology Journal, 2016,52(5):762-770. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2016.0120
[11]   张静.温州蜜柑和几种晚熟柑橘理化品质及功能成分研究.重庆:西南大学,2019. DOI:10.51711/jaab.2019.35.1.5
ZHANG J. Quality and functional compounds of satsuma mandarin and several late-maturing citrus in China. Chongqing: Southwest University, 2019. (in Chinese with English abstract)
doi: 10.51711/jaab.2019.35.1.5
[12]   CELANO R, CAMPONE L, PAGANO I, et al. Characteri-zation of nutraceutical compounds from different parts of particular species of Citrus sinensis ‘Ovale Calabrese’ by UHPLC-UV-ESI-HRMS. Natural Product Research, 2018,33(2):224-251. DOI:10.1080/14786419.2018.1443102
doi: 10.1080/14786419.2018.1443102
[13]   PETERSON J J, DWYER J T, BEECHER G R, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. Journal of Food Composition & Analysis, 2006,19:S66-S73. DOI:10.1016/j.jfca.2005.12.006
doi: 10.1016/j.jfca.2005.12.006
[1] Bei HUANG,Peng WANG,Mingxia WEN,Shaohui WU,Jianguo XU. Effects of different degrees of drought stress on plants and flowering physiology in Satsuma mandarin (Citrus unshiu Yura)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 557-565.
[2] Min HONG,Mingyang HE,Rikui WANG,Lian ZHOU,Jing WANG,Yu FENG. Changes of anthocyanin, sugar and acid accumulation and expression characteristics of related metabolic genes in Tarocco blood oranges during room temperature storage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 589-597.
[3] Jing ZHANG,Qian ZHOU,Yushi GAO,Xiujun TANG,Junxian LU,Lina MA,Dawei CHEN,Mengjun TANG. Residue depletion laws of florfenicol and its metabolite florfenicol amine in eggs[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 127-134.
[4] Jin LI,Lianfu CHEN,Eunhye KIM,Bo LI,Youying TU. Research on flavonoid glycosides of tea flower in different tea plant cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 707-714.
[5] Gang LUO,Jie WANG,Tingting CHEN,Linhai LIU,Songjia LAI. Correlation between leptin gene expression level in different tissues and meat quality in Zika rabbit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 484-489.
[6] Lili WANG,Junguo YANG,Qingxia LIN,Lihui XIANG,Zhenshuo SONG,Yinggen ZHANG,Lin CHEN. Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 47-53.
[7] SHENG Wei, MO Yaying, HU Zhongjian, RU Yalu, WU Yuhuan. Distributional characteristics of epiphytic bryophytes and the relationships with environmental factors in Hangzhou City[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 711-721.
[8] TAN Liangliang, SHEN Lirong. Determination of the metabolites, eicosanoids derived from polyunsaturated fatty acids in Drosophila tissue with high performance liquid chromatography tandem mass spectrometry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 8-16.
[9] Du Ruiqing, Lin Shanhai,Huang Siliang, Zhang Zhengtian, Qin Liping, Li Qiqin . Statistical analysis of carbon and nitrogen sources for growth and sporulation of Exserohilum rostratum causing banana leaf spot disease[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 64-74.
[10] Zhang Yongliang, Wu Anquan, Zhao Jinhui. Cloning and characterization of Bombyx mandarina serine proteaselike protein[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 119-124.
[11] RUAN Huina, LIU Songbai*. Comparison of normal and reverse phase column in phytosterol detection by high performance liquid chromatography (HPLC)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 233-236.
[12] ZHAO Ying, LIU Qi, WANG Meng, ZHANG Li. Extraction and determination of active ingredients from Salvia paohsingensis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 299-304.
[13] ZHANG Yongliang, SHENG Dongfeng, ZHU Yong. Cloning and characterization of Bombyx mandarina prophenoloxidase gene PPO1[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 256-262.