Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (3): 383-392    DOI: 10.3785/j.issn.1008-9209.2021.05.071
Animal sciences & veterinary medicines     
Enhancement effect of nasal mucosal adjuvant LTB-Rg1 on an inactivated porcine reproductive and respiratory syndrome virus vaccine in mice and its biological safety evaluation
Fei SU1(),Yin XUE2,Lihua XU1,Junxing LI1,Bin YU1,Xiufang YUAN1()
1.Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
2.Zhejiang Center of Animal Disease Control, Hangzhou 310018, China
Download: HTML   HTML (   PDF(2179KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The aim of this study was to investigate the effect of intranasal adjuvant B subunit of heat-labile enterotoxin (LTB) of the recombinant Escherichia coli in combination with ginsenoside Rg1 in mice and evaluate its biological safety profile. Mice were intranasally immunized with saline, inactivated vaccine of porcine reproductive and respiratory syndrome virus (PRRSV), inactivated vaccine of PRRSV admixed with LTB or Rg1 or LTB-Rg1 for three times, respectively. Immunoglobulin M (IgM), IgG and IgA antibody levels in serum and bronchoalveolar mucus were measured by enzyme-linked immunosorbent assay; mRNA expression levels of cytokines from spleen and lung were detected by real-time fluorescent quantitative polymerase chain reation; body mass and serum biochemical indexes of mice were monitored regularly. The results showed that LTB-Rg1 quickly increased the levels of PRRSV-specific IgM, IgG and IgA antibodies in serum and bronchoalveolar mucosa, prolonged antibody functioning time, and remarkably upregulated the expression levels of Th1?- and Th2-type cytokines when compared with the vaccine alone group. LTB-Rg1 had no effects on body mass, hepatic or renal functions. Therefore, LTB-Rg1 is a safe and potential nasal mucosal immune adjuvant that is worthy of further study.



Key wordsLTB-Rg1      porcine reproductive and respiratory syndrome virus      nasal mucosa      combined adjuvant     
Received: 07 May 2021      Published: 07 July 2022
CLC:  S 853.74  
Corresponding Authors: Xiufang YUAN     E-mail: sufei_study@163.com;xiufangyuan@126.com
Cite this article:

Fei SU,Yin XUE,Lihua XU,Junxing LI,Bin YU,Xiufang YUAN. Enhancement effect of nasal mucosal adjuvant LTB-Rg1 on an inactivated porcine reproductive and respiratory syndrome virus vaccine in mice and its biological safety evaluation. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 383-392.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.05.071     OR     https://www.zjujournals.com/agr/Y2022/V48/I3/383


鼻黏膜复合佐剂LTB-Rg1在小鼠体内对猪繁殖与呼吸综合征病毒灭活疫苗的增强作用及其生物安全性评价

为探究重组大肠埃希菌不耐热肠毒素B亚单位(B subunit of heat-labile enterotoxin, LTB)和人参皂苷Rg1联合滴鼻免疫小鼠的佐剂效果并评估其生物安全性,本研究分别将生理盐水,猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)灭活疫苗,PRRSV灭活疫苗混合LTB或Rg1或LTB-Rg1滴鼻免疫小鼠,共免疫3次。利用酶联免疫吸附测定检测小鼠血清和支气管肺泡黏液中的免疫球蛋白M(immunoglobulin M, IgM)、免疫球蛋白G(IgG)和免疫球蛋白A(IgA)抗体水平;采用实时荧光定量聚合酶链反应法检测小鼠脾脏和肺脏中细胞因子mRNA转录水平;定期监测小鼠的体质量变化和血清生化指标。结果显示:与单独PRRSV疫苗组相比,LTB-Rg1/PRRSV组能够在血清和呼吸道黏膜表面迅速产生高水平的IgM、IgG和IgA抗体,并有效延长抗体的作用时间;显著上调Th1、Th2型细胞因子的转录水平;对小鼠的体质量增长和肝肾功能均无明显影响。综上所述,LTB-Rg1是一种比较安全且极具潜力的鼻黏膜免疫佐剂,值得深入研究。


关键词: LTB-Rg1,  猪繁殖与呼吸综合征病毒,  鼻黏膜,  复合佐剂 

目的基因

Target gene

引物序列(5′→3′)

Primer sequence (5′→3′)

Actb

F: AGCGGTTCCGATGCCCT

R: AGAGGTCTTTACGGATGTCAACG

Il2

F: CCTGAGCAGGATGGAGAATTACA

R: TCCAGAACATGCCGCAGAG

Ifng

F: GCTTTGCAGCTCTTCCTCATG

R: CTTCCACATCTATGCCACTTGAG

Il5

F: GACGAGGCAGTTCCTGGAT

R: GCATATGGTATCCCTTGCATT

Il10

F: GGGTTGCCAAGCCTTATCG

R: GCTTCTCACCCAGGGAATTC

Table 1 Primer sequences
Fig. 1 PRRSV-specific IgM antibody levels after the first intranasal immunization in miceA1-A3. Serum; B1-B3. Bronchoalveolar lavage fluid. Compared with PRRSV group, double asterisks (**) and triple asterisks (***) indicate significant differences at the 0.01 and 0.001 probability levels, respectively; compared with LTB/PRRSV group, double pound signs (##) and triple pound signs (###) indicate significant differences at the 0.01 and 0.001 probability levels, respectively; compared with Rg1/PRRSV group, double triangles (ΔΔ) and triple triangles (ΔΔΔ) indicate significant differences at the 0.01 and 0.001 probability levels, respectively. The same as below.
Fig. 2 PRRSV-specific IgG (A1-A3) and IgA (B1-B3) antibody levels after the first intranasal immunization in miceCompared with PRRSV group, single asterisk (*) indicates significant differences at the 0.05 probability level; compared with LTB/PRRSV group, single pound sign (#) indicates significant differences at the 0.05 probability level; compared with Rg1/PRRSV group, single triangle (Δ) indicates significant differences at the 0.05 probability level.
Fig. 3 Relative expression levels of cytokines in spleen after the intranasal immunization in miceSingle asterisk (*) and triple asterisks (***) indicate significant differences at the 0.05 and 0.001 probability levels, respectively. The same as below.
Fig. 4 Relative expression levels of cytokines in lung after the intranasal immunization in miceDouble asterisks (**) indicate significant differences at the 0.01 probability level.
Fig. 5 Effect of LTB-Rg1 on mice body mass after the first intranasal immunization
Fig. 6 Effect of LTB-Rg1 on serum biochemical indicators in mice after the first intranasal immunization
[1]   WANG H L, XU Y Y, FENG W H. Porcine reproductive and respiratory syndrome virus: immune escape and application of reverse genetics in attenuated live vaccine development[J]. ‍Vaccines ‍(Basel), ‍2021, ‍9‍(5): ‍480. ‍DOI:‍10.3390/‍vaccines9050480
doi: ?10.3390/?vaccines9050480
[2]   MA J, MA L L, YANG M T, et al. The function of the PRRSV-host interactions and their effects on viral replication and propagation in antiviral strategies[J]. Vaccines (Basel), 2021, 9(4): 364. DOI:10.3390/vaccines9040364
doi: 10.3390/vaccines9040364
[3]   BELLO-ONAGHISE G, WANG G, HAN X, et al. Antiviral strategies of Chinese herbal medicine against PRRSV infection[J]. Frontiers in Microbiology, 2020, 11: 1756. DOI:10.3389/fmicb.2020.01756
doi: 10.3389/fmicb.2020.01756
[4]   THANASARASAKULPONG A, POOLPERM P, TANKAEW P, et al. Protectivity conferred by immunization with intranasal recombinant outer membrane protein H from Pasteurella multocida serovar A: 1 in chickens[J]. The Journal of Veterinary Medical Science, 2015, 77(3): 321-326. DOI:10.1292/jvms.14-0532
doi: 10.1292/jvms.14-0532
[5]   MARCHIORO S B, SÁCRISTAN R D P, MICHIELS A, et al. Immune responses of a chimaeric protein vaccine containing Mycoplasma hyopneumoniae antigens and LTB against experimental M. hyopneumoniae infection in pigs[J]. Vaccine, ‍2014, ‍32‍(36): ‍4689-‍4694. ‍DOI:‍10.1016/‍j.‍vaccine.2014.05.072
doi: ?10.1016/?j.?vaccine.2014.05.072
[6]   REN Z G, ZHAO Y K, LIU J, et al. Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice[J]. Vaccine, 2018, 36(40): 5990-5998. DOI:10.1016/j.vaccine.2018.08.053
doi: 10.1016/j.vaccine.2018.08.053
[7]   LEE J Y, YOO J K, SOHN H J, et al. Protective immunity against Naegleria fowleri infection on mice immunized with the rNfa1 protein using mucosal adjuvants[J]. Parasitology Research, 2015, 114(4): 1377-1385. DOI:10.1007/s00436-015-4316-3
doi: 10.1007/s00436-015-4316-3
[8]   LEI H, PENG X J, SHU H D, et al. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus[J]. Journal of Medical Virology, 2015, 87(1): 39-44. DOI:10.1002/jmv.23983
doi: 10.1002/jmv.23983
[9]   CONCEIÇÃO F R, MOREIRA A N, DELLAGOSTIN O A. A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice[J]. Vaccine, 2006, 24(29/30): 5734-5743. DOI:10.1016/j.vaccine.2006.04.036
doi: 10.1016/j.vaccine.2006.04.036
[10]   SU F, XU L H, XUE Y, et al. Th1-biased immunoadjuvant effect of the recombinant B subunit of an Escherichia coli heat-labile enterotoxin on an inactivated porcine reproductive and respiratory syndrome virus antigen via intranasal immunization in mice[J]. Journal of Veterinary Medical Science, 2019, 81(10): 1475-1484. DOI:10.1292/jvms.19-0057
doi: 10.1292/jvms.19-0057
[11]   YUAN D, YUAN Q, CUI Q Q, et al. Vaccine adjuvant ginsenoside Rg1 enhances immune responses against hepatitis B surface antigen in mice[J]. Canadian Journal of Physiology Pharmacology, 2016, 94(6): 676-681. DOI:10.1139/cjpp-2015-0528
doi: 10.1139/cjpp-2015-0528
[12]   SU F, YUAN L, ZHANG L J, et al. Ginsenosides Rg1 and Re act as adjuvant via TLR4 signaling pathway[J]. Vaccine, 2012, 30(27): 4106-4112. DOI:10.1016/j.vaccine.2012.03.052
doi: 10.1016/j.vaccine.2012.03.052
[13]   SU F, XUE Y, WANG Y M, et al. Protective effect of ginsenosides Rg1 and Re on lipopolysaccharide-induced sepsis by competitive binding to Toll-like receptor 4[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(9): 5654-5663. DOI:10.1128/AAC.01381-15
doi: 10.1128/AAC.01381-15
[14]   苏菲,薛银,李军星,等.人参皂苷Rg1联合重组大肠埃希菌不耐热肠毒素rLTB作为滴鼻免疫佐剂在小鼠体内的作用研究[J].中国预防兽医学报,2019,41(7):735-739. DOI:10.3969/j.issn.1008-0589.201812038
SU F, XUE Y, LI J X, et al. Effect of ginsenoside Rg1 in combination with recombinant Escherichia coli heat-labile enterotoxin rLTB as intranasal adjuvant in mice[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(7): 735-739. (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-0589.201812038
[15]   SU F, WU Y G, LI J X, et al. Escherichia coli heat-labile enterotoxin B subunit combined with ginsenoside Rg1 as an intranasal adjuvant triggers type Ⅰ interferon signaling pathway and enhances adaptive immune responses to an inactivated PRRSV vaccine in ICR mice[J]. Vaccines (Basel), 2021, 9(3): 266. DOI:10.3390/vaccines9030266
doi: 10.3390/vaccines9030266
[16]   GAO X L, ZHAO L, WANG S H, et al. Enhanced inducible costimulator ligand (ICOS-L) expression on dendritic cells in interleukin-10 deficiency and its impact on T-cell subsets in respiratory tract infection[J]. Molecular Medicine, 2013, 19(1): 346-356. DOI:10.2119/molmed.2013.00035
doi: 10.2119/molmed.2013.00035
[17]   SU X Y, PEI Z Y, HU S H. Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice[J]. International Immunopharmacology, 2014, 20(2): 283-289. DOI:10.1016/j.intimp.2014.03.008
doi: 10.1016/j.intimp.2014.03.008
[18]   MA Y P. Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants[J]. Expert Review of Vaccines, ‍2016, ‍15‍(11): ‍1361-‍1371. ‍DOI:‍10.1080/‍14760584.2016.1182868
doi: ?10.1080/?14760584.2016.1182868
[19]   NEWSTED D, FALLAHI F, GOLSHANI A, et al. Advances and challenges in mucosal adjuvant technology[J]. Vaccine, 2015, 33(21): 2399-2405. DOI:10.1016/j.vaccine.2015.03.096
doi: 10.1016/j.vaccine.2015.03.096
[20]   LEWIS D J M, HUO Z M, BARNETT S, et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin[J]. PLoS ONE, 2009, 4(9): e6999. DOI:10.1371/journal.pone.0006999
doi: 10.1371/journal.pone.0006999
[21]   HAGIWARA Y, IWASAKI T, ASANUMA H, et al. Effects of intranasal administration of cholera toxin (or Escherichia coli heat-labile enterotoxin) B subunits supplemented with a trace amount of the holotoxin on the brain[J]. Vaccine, 2001, 19(13/14): 1652-1660. DOI:10.1016/S0264-410X(00)00412-6
doi: 10.1016/S0264-410X(00)00412-6
[22]   WONG P T, GOFF P H, SUN R J, et al. Combined intranasal ‍nanoemulsion ‍and ‍RIG-‍I ‍activating ‍RNA ‍adjuvants enhance ‍mucosal, ‍humoral, ‍and ‍cellular ‍immunity ‍to ‍influenza virus[J]. Molecular Pharmaceutics, 2021, 18(2): 679-698. DOI:10.1021/acs.molpharmaceut.0c00315
doi: 10.1021/acs.molpharmaceut.0c00315
[23]   ZENOBIA C, HERPOLDT K L, FREIRE M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases[J]. NPJ Vaccines, 2021, 6(1): 80. DOI:10.1038/s41541-021-00341-4
doi: 10.1038/s41541-021-00341-4
[24]   JONES K, SAVULESCU A F, BROMBACHER F, et al. Immunoglobulin M in health and diseases: How far have we come and what next[J]. Frontiers in Immunology, 2020, 11: 595535. DOI:10.3389/fimmu.2020.595535
doi: 10.3389/fimmu.2020.595535
[25]   LEE J, KIM Y M, KIM J H, et al. Nasal delivery of chitosan/alginate nanoparticle encapsulated bee (Apis mellifera) venom promotes antibody production and viral clearance during porcine reproductive and respiratory syndrome virus infection by modulating T cell related responses[J]. Veterinary Immunology and Immunopathology, 2018, 200: 40-51. DOI:10.1016/j.vetimm.2018.04.006
doi: 10.1016/j.vetimm.2018.04.006
[26]   SHI K C, GUO X, GE X N, et al. Cytokine mRNA expression profiles in peripheral blood mononuclear cells from piglets experimentally co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2[J]. Veterinary Microbiology, 2010, 140(1/2): 155-160. DOI:10 .1016/j.vetmic.2009.07.021
doi: 10
[27]   LI X, GALLIHER-BECKLEY A, PAPPAN L, et al. Comparison of host immune responses to homologous and heterologous typeⅡporcine reproductive and respiratory syndrome virus (PRRSV) challenge in vaccinated and unvaccinated pigs[J]. BioMed Research International, 2014, 2014: 416727. DOI:10.1155/2014/416727
doi: 10.1155/2014/416727
[28]   PLOTKIN S A, GILBERT P B. Nomenclature for immune correlates of protection after vaccination[J]. Clinical Infectious Diseases, 2012, 54(11): 1615-1617. DOI:10.1093/cid/cis238
doi: 10.1093/cid/cis238
[29]   FONTANELLA E, MA Z X, ZHANG Y J, et al. An interferon inducing porcine reproductive and respiratory syndrome virus vaccine candidate elicits protection against challenge with the heterologous virulent type 2 strain VR-2385 in pigs[J]. Vaccine, 2017, 35(1): 125-131. DOI:10.1016/j.vaccine.2016.11.020
doi: 10.1016/j.vaccine.2016.11.020
No related articles found!