Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (3): 377-382    DOI: 10.3785/j.issn.1008-9209.2021.06.211
Animal sciences & veterinary medicines     
Effects of iron saturation on antibacterial activity of lactoferrin
Zhenjie WANG(),Kang ZHANG,Li LIANG,Qingqing XIONG,Huahua DU()
Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Institute of Feed Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(2958KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The purpose of this study was to elucidate how iron-depleted and iron-saturated forms of lactoferrin (Lf) exert its antibacterial activity in vitro. Bacteria were divided into three groups by treated with different forms of porcine Lf: the control group (without addition of Lf), apolactoferrin (Apo-Lf, iron saturation is 6.9%) group and hololactoferrin (Holo-Lf, iron saturation is 100.0%) group. The results showed that: 1) Native Lf and Apo-Lf significantly inhibited the growth of Escherichia coli K88 and Staphylococcus aureus (P<0.01), which was not observed in Holo-Lf group. 2) Apo-Lf exerted antibacterial effect by chelating iron, and iron supplementation could eliminate the inhibitory effect of Apo-Lf on E. coli K88. 3) Scanning electron microscope (SEM) results revealed that Apo-Lf damaged the surface membranes of E. coli K88 and S. Aureus. However, Holo-Lf showed no effect on all of tested bacteria. 4) Predicted three-dimensional structures showed that the structures of Apo-Lf and Holo-Lf were markedly different, and the active site of Apo-Lf was more likely to directly interact with bacteria. Taken together, Apo-Lf inhibited the growth of E. coli K88 and S. Aureus by chelating iron or destroying the surface of bacteria.



Key wordslactoferrin      antibacterial      iron saturation      apolactoferrin      hololactoferrin     
Received: 21 June 2021      Published: 07 July 2022
CLC:  S 816.7  
Corresponding Authors: Huahua DU     E-mail: 1035043032@qq.com;huahuadu@zju.edu.cn
Cite this article:

Zhenjie WANG,Kang ZHANG,Li LIANG,Qingqing XIONG,Huahua DU. Effects of iron saturation on antibacterial activity of lactoferrin. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 377-382.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.06.211     OR     https://www.zjujournals.com/agr/Y2022/V48/I3/377


铁饱和度对乳铁蛋白抑菌活性的影响

本试验通过制备不同铁饱和度的猪乳铁蛋白(lactoferrin, Lf),探讨其对细菌生长的影响。根据铁饱和度将试验分为3组,对照组(不添加任何Lf)、铁不饱和乳铁蛋白处理组(Apo-Lf,铁饱和度为6.9%)和铁饱和乳铁蛋白处理组(Holo-Lf,铁饱和度为100.0%),分别处理大肠埃希菌K88、金黄色葡萄球菌和鼠伤寒沙门菌。结果表明:1)天然Lf和Apo-Lf能显著抑制大肠埃希菌K88和金黄色葡萄球菌的生长,而Holo-Lf没有表现出抑菌活性。2)补铁可以消除Apo-Lf对大肠埃希菌K88的抑制作用,说明Apo-Lf是通过螯合铁发挥抑菌功能的。3)扫描电镜观察结果显示,Apo-Lf破坏了大肠埃希菌K88和金黄色葡萄球菌的细菌膜结构,但Holo-Lf对所有被测细菌都没有影响。4)三维结构预测结果提示,Apo-pLf和Holo-pLf的三维结构开放程度明显不同,Apo-pLf的活性位点可能更容易与细菌直接作用。综上所述,猪乳铁蛋白的抑菌活性依赖于其铁饱和度,Apo-Lf既可以通过螯合铁的方式抑制细菌生长,也可以通过破坏细菌膜结构方式抑制大肠埃希菌K88和金黄色葡萄球菌的生长。


关键词: 乳铁蛋白,  抑菌,  铁饱和度,  铁不饱和乳铁蛋白,  铁饱和乳铁蛋白 
Fig. 1 Effects of different concentrations of Lf on the growth of E. coli K88Double asterisks (**) indicate highly significant differences at the 0.01 probability level.
Fig. 2 Effects of Apo-Lf and Holo-Lf on the growth of bacteria
Fig. 3 Effects of Fe supplement on the growth of Lf-treated E. coli K88
Fig. 4 Effects of Fe in the culture medium on the growth of bacteria
Fig. 5 Effects of 50.0 µg/mL Apo-Lf and 50.0 µg/mL Holo-Lf on the morphologies of bacteriaThe damaged bacterial morphology are indicated by red arrows.
Fig. 6 Predicted three-dimensional structures of Apo-Lf and Holo-LfIron binding sites are indicated by red arrows.
[1]   LEE S H, SHINDE P, CHOI J Y, et al. Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs[J]. Biological Trace Element Research, 2008, 126(): 57-68. DOI:10.1007/s12011-008-8209-5
doi: 10.1007/s12011-008-8209-5
[2]   PHILPOTT C C. Coming into view: eukaryotic iron chaperones and intracellular iron delivery[J]. Journal of Biological Chemistry, 2012, 287(17): 13518-13523. DOI:10.1074/jbc.R111.326876
doi: 10.1074/jbc.R111.326876
[3]   NICOLS G, CHAUVET C, VIATTE L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation[J]. The Journal of Clinical Investigation, 2002, 110(7): 1037-1044. DOI:10.1172/ JCI15686
doi: 10.1172/
[4]   WEINBERG E D. Iron loading and disease surveillance[J]. Emerging Infectious Diseases, 1999, 5(3): 346-352. DOI:10.3201/eid0503.990305
doi: 10.3201/eid0503.990305
[5]   LIANG L, WANG Z J, YE G, et al. Distribution of lactoferrin is related with dynamics of neutrophils in bacterial infected mice intestine[J]. Molecules, 2020, 25(7): 1496. DOI:10.3390/molecules25071496
doi: 10.3390/molecules25071496
[6]   ALEXANDER D B, IIGO M, YAMAUCHI K, et al. Lactoferrin: an alternative view of its role in human biological fluids[J]. Biochemistry and Cell Biology, 2012, 90(3): 279-306. DOI:10.1139/o2012-013
doi: 10.1139/o2012-013
[7]   KUHARA T, YAMAUCHI K, TAMURA Y, et al. Oral administration of lactoferrin increaseds NK cell activity in mice via increased production of IL-18 and type Ⅰ IFN in the small intestine[J]. Journal of Interferon & Cytokine Research, 2006, 26(7): 489-499. DOI:10.1089/jir.2006.26.489
doi: 10.1089/jir.2006.26.489
[8]   MORENO-EXPÓSITO L, ILLESCAS-MONTES R, MELGUIZO-RODRÍGUEZ L, et al. Multifunctional capacity and therapeutic potential of lactoferrin[J]. Life Sciences, 2018, 195: 61-64. DOI:10.1016/j.lfs.2018.01.002
doi: 10.1016/j.lfs.2018.01.002
[9]   FARNAUD S, EVANS R W. Lactoferrin—a multifunctional protein with antimicrobial properties[J]. Molecular Immunology, 2003, 40(7): 395-405. DOI:‍10.1016/S0161-5890(03)00152-4
doi: ?10.1016/S0161-5890(03)00152-4
[10]   HAN F F, GAO Y H, LUAN C, et al. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides[J]. Journal of Dairy Science, 2013, 96(6): 3471-3487. DOI:10.3168/jds.2012-6104
doi: 10.3168/jds.2012-6104
[11]   WANG X Y, GUO H Y, ZHANG W, et al. Effect of iron saturation level of lactoferrin on osteogenic activity in vitro and in vivo [J]. Journal of Dairy Science, 2013, 96(1): 33-39. DOI:10.3168/jds.2012-5692
doi: 10.3168/jds.2012-5692
[12]   TIAN H, MADDOX I S, FERGUSON L R, et al. Influence of bovine lactoferrin on selected probiotic bacteria and intestinal pathogens[J]. Biometals, 2010, 23(3): 593-596. DOI:10.1007/s10534-010-9318-0
doi: 10.1007/s10534-010-9318-0
[13]   DIONYSIUS D A, GRIEVE P A, MILNE J M. Forms of lactoferrin: their antibacterial effect onenterotoxigenic Escherichia coli [J]. Journal of Dairy Science, 1993, 76(9): 2597-2606. DOI:10.3168/jds.s0022-0302(93)77594-3
doi: 10.3168/jds.s0022-0302(93)77594-3
[14]   VISCA P, BERLUTTI F, VITTORIOSO P, et al. Growth and adsorption of Streptococcus mutans 6715-13 to hydroxyapatite in the presence of lactoferrin[J]. Medical Microbiology and Immunology, 1989, 178(2): 69-79. DOI:10.1007/bf00203302
doi: 10.1007/bf00203302
[15]   LEWIS L A, ROHDE K, GIPSON M, et al. Identification and molecular analysis of lbpBA, which encodes the two-component meningococcal lactoferrin receptor[J]. Infection and Immunity, 1998, 66(6): 3017-3023. DOI:10.1128/iai.66.6.3017-3023.1998
doi: 10.1128/iai.66.6.3017-3023.1998
[16]   BHIMANI R S, VENDROV Y, FURMANSKI P. Influence of lactoferrin feeding and injection against systemic staphylococcal infection in mice[J]. Journal of Applied Microbiology, 1999, 86(1): 135-144. DOI:10.1046/j.1365-2672.1999.00644.x
doi: 10.1046/j.1365-2672.1999.00644.x
[17]   BRANDENBURG K, JÜRGENS G, MÜLLER M, et al. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin[J]. Biological Chemistry, 2001, 382(8): 1215-1225. DOI:10.1515/BC.2001.152
doi: 10.1515/BC.2001.152
[18]   QIU J Z, HENDRIXSON D R, BAKER E N, et al. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenza [J]. PNAS, 1998, 95: 12641-12646. DOI:10.1073/pnas.95.21.12641
doi: 10.1073/pnas.95.21.12641
[19]   HENDRIXSON D R, QIU J, SHEWRY S C, et al. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites[J]. Molecular Microbiology, 2003, 47(3): 607-617. DOI:10.1046/j.1365-2958.2003.03327.x
doi: 10.1046/j.1365-2958.2003.03327.x
[1] LU Haiyan, XU Chongxin, ZHANG Xiao, LIANG Ying, LIU Xianjin. Antibacterial effect of limonene on food-borne pathogens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 306-312.
[2] LIU Shuping, WANG Lei . Optimization of the extraction process and combined determination
of antibacterial ingredients of Li Peng
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 23-29.
[3] Zhuang Yuanhong, Liu Jingna, Huang Jiafu, Lin Jiaofen, Pan Yutian . Stability and antibacterial activity of complex gel with edible chitosan and carbomer.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 147-152.
[4] WANG Chunrong, FANG Chengji, YU Qingqing, JIANG Peng, TIAN Wei*. Gas chromatography and mass spectrometry (GCMS) analysis of supercritical CO2 extract of flower bud of Chrysanthemum indicum and its antibacterial activity. Journal of Zhejiang University[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 167-172.