Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (1): 98-106    DOI: 10.3785/j.issn.1008-9209.2020.03.122
Resource utilization & environmental protection     
Characteristics of an endogenous compound microbial inoculant and its immobilization effect on wastewater treatment from pig feedlots
Xinxin YOU(),Sheng WANG,Linna DU()
Wenzhou Vocational College of Science and Technology, Wenzhou 325006, Zhejiang, China
Download: HTML   HTML (   PDF(3444KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking the wastewater from large-scale pig feedlots as the research object and the original wastewater as the main nutrient source, an endogenous compound microbial inoculant was successfully prepared by the enrichment method, which was named as WKM, and its removal effects on chemical oxygen demand (COD) and ammonia nitrogen in the process of wastewater treatment from pig feedlots were analyzed and monitored. The results showed that the removal rates of COD and ammonia nitrogen in the pig feedlot wastewater (ZW) were 94.8% and 61.8%, respectively, after 3 d by adding the WKM. The high-throughput sequencing results indicated that the main microbial species of WKM belonged to Proteobacteria, Actinobacteria and Bacteroidetes at the phylum level. The main microbial species at the genus levelbelonged to Leucobacter, Castellaniella, Camelimonas, Moheibacter, Nitrosomonas, Cloacibacillus and Pusillimonas, of which the mass ratio was approximately 2∶2∶2∶2∶1.5∶1.5∶1. The results based on the clusters of orthologous groups of proteins (COG) analysis showed the abundances of amino acid transport and metabolism ([E]), energy production and conversion ([C]), carbohydrate transport and metabolism ([G]), inorganic ion transport and metabolism ([P]) and coenzyme transport and metabolism ([H]) were relatively high, which played an essential role in the conversion of organic substances such as proteins and lipids in the pig feedlot wastewater containing high concentrations of ammonia nitrogen and organic pollutants. Furthermore, the endogenous compound microbial inoculant immobilized with wheat bran showed a higher removal efficiency for COD in the pig feedlot wastewater (ZR), compared with the non-addition group (P<0.01) and WKM group (P<0.05). Besides, one-way analysis of variance showed that the immobilization ratio of 1∶50 (mass/volume) of wheat bran to compound microbial inoculant had the highest removal efficiency in COD (P<0.05) among all the treatments, reaching to 89.4% in the pig feedlot wastewater (ZR). To sum up, the endogenous compound microbial inoculant immobilized with wheat bran has potential application prospect and practical value at wastewater treatment from pig feedlots.



Key wordswastewater from pig feedlots      endogenous compound microbial inoculant      high-throughput sequencing      wheat bran immobilization     
Received: 12 March 2020      Published: 09 March 2021
CLC:  X  
Corresponding Authors: Linna DU     E-mail: luckyxinyou@163.com;dlg1314@126.com
Cite this article:

Xinxin YOU,Sheng WANG,Linna DU. Characteristics of an endogenous compound microbial inoculant and its immobilization effect on wastewater treatment from pig feedlots. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 98-106.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.03.122     OR     http://www.zjujournals.com/agr/Y2021/V47/I1/98


一种内源性复合微生物菌剂的特性及其固定化对猪场粪污水的处理效果

以规模化猪场粪污水为研究对象,以污水原液为主要营养来源,通过富集内源性土著微生物得到复合微生物菌剂(WKM),并分析监测其在污水处理过程中对猪场粪污水化学需氧量(chemical oxygen demand, COD)和氨氮的削减效果。结果表明:投加WKM处理3 d后,猪场粪污水(ZW)中COD和氨氮去除率分别达94.8%和61.8%。通过高通量测序发现:复合微生物菌剂中主要微生物种类属于变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes);在属水平上,其主要的微生物种类属于白色杆菌属(Leucobacter)、卡斯特兰尼菌属(Castellaniella)、Camelimonas属、Moheibacter属、亚硝化单胞菌属(Nitrosomonas)、Cloacibacillus属和尼古丁降解菌属(Pusillimonas),丰度比例约为2∶2∶2∶2∶1.5∶1.5∶1。基于直系同源蛋白簇(clusters of orthologous groups of proteins, COG)功能分布预测表明:复合微生物菌剂WKM的微生物功能结构中,氨基酸转运和代谢([E])、能量产生与转化([C])、碳水化合物转运和代谢([G])、无机离子转运和代谢([P])、辅酶转运和代谢([H])的功能丰度相对较高,对含高浓度的氨氮和有机污染物的猪场粪污水中蛋白质及脂类等有机物质的转换起到了重要作用。在猪场粪污水(ZR)中,经麸皮固定化后的复合微生物菌剂对COD的去除率进一步提高,极显著高于无添加组(P<0.01)和显著高于WKM组(P<0.05)。通过固定化配比优化实验得出:按照质量体积比1∶50的比例混合的麸皮和复合微生物菌剂对COD的去除效果最佳,高达89.4%(P<0.05)。综上所述,本研究制备获得的麸皮固定化复合微生物菌剂在猪场粪污水的除污处理中具有潜在的应用和实践价值。


关键词: 猪场粪污水,  内源性复合微生物菌剂,  高通量测序,  麸皮固定化 
Fig. 1 Removal efficiencies of COD and ammonia nitrogen in wastewater from pig feedlots treated by the endogenous compound microbial inoculant immo-bilized with wheat branWB: Wheat bran; WKM: Compound microbial inoculant; CK: Non-addition. m(WB)∶V(WKM)=1∶50. Single asterisk (*) and double asterisks (**) indicate significant and highly significant differences at the 0.05 and 0.01 probability levels, respectively.
Fig. 2 Classification and phylogenetic information map of WKM-1, WKM-2 and WKM-3The center of the figure is the evolutionary taxonomic tree of the top 100 species with high abundance, and the phylum of the top 20 species (marked with asterisks) are marked by different colors, and the sizes of the circle and the asterisk represent the level of abundance. The outer ring is a thermal ring, in which each ring is a sample (group) that corresponds to a color. The color intensity varies with species abundance.
Fig. 3 Heat map of the species abundance in WKM-1, WKM-2 and WKM-3
Fig. 4 Heat map of functional abundance in WKM-1, WKM-2 and WKM-3 based on clusters of orthologous groups of proteins (COG)
Fig. 5 Removal efficiencies of COD and ammonia nitrogen in wastewater from pig feedlots treated by the endogenous compound microbial inoculant immo-bilized with wheat bran of different ratiosSingle asterisk (*) indicates significant differences at the 0.05 probability level.
[1]   俞丹宏,潘根长.浙江省畜禽养殖业的污染问题及防治对策.浙江畜牧兽医,2001(2):14.
YU D H, PAN G C. Pollution and measurement of livestock and poultry breeding in Zhejiang Province. Zhejiang Journal Animal Science and Veterinary Medicine, 2001(2):14. (in Chinese)
[2]   李淑兰,邓良伟.2007年我国畜禽养殖废弃物处理的宏观政策及技术进展.猪业科学,2008(1):70-72.
LI S H, DENG L W. Macro policy and technical progress of livestock and poultry breeding waste treatment of China in 2007. Swine Industry Science, 2008(1):70-72. (in Chinese)
[3]   唐伟,张远,王书平,等.微生物菌剂在水体修复中的应用进展.环境工程技术学报,2019,9(2):151-158. DOI:10.12153/j.issn.1674-991X.2018.11.050
TANG W, ZHANG Y, WANG S P, et al. Application progress of microbial agents in water remediation. Journal of Environmental Engineering Technology, 2019,9(2):151-158. (in Chinese with English abstract)
doi: 10.12153/j.issn.1674-991X.2018.11.050
[4]   刘秀梅,聂俊华,王庆仁.多种微生物复合的微生态制剂研究进展.中国生态农业学报,2002,10(4):84-87.
LIU X M, NIE J H, WANG Q R. Research progress in the probiotics of compound microorganisms. Chinese Journal of Eco-Agriculture, 2002,10(4):84-87. (in Chinese with English abstract)
[5]   MISHRA S, JYOT J, KUHAD R C, et al. In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Current Microbiology, 2001,43(5):328-335. DOI:10.1007/s002840010311
doi: 10.1007/s002840010311
[6]   毕二平,张翠云,张胜,等.地下水硝酸盐污染原位微生物修复技术研究进展.水资源保护,2009,25(3):1-5.
BI E P, ZHANG C Y, ZHANG S, et al. The progress of in-situ microbial remediation for removal nitrate from groundwater. Water Resources Protection, 2009,25(3):1-5. (in Chinese with English abstract)
[7]   杨世帆,田鑫淼,张梦瑶,等.添加饲用复合菌剂黄贮玉米秸秆品质的综合评定.饲料研究,2019,42(5):82-86. DOI:10.13557/j.cnki.issn1002-2813.2019.05.023
YANG S F, TIAN X M, ZHANG M Y, et al. Comprehensive evaluation of quality of adding compound microbes to yellow storage corn stalk. Feed Research, 2019,42(5):82-86. (in Chinese with English abstract)
doi: 10.13557/j.cnki.issn1002-2813.2019.05.023
[8]   李晶,高雪,陈静宇,等.微生物复合菌剂在马铃薯上的田间应用效果研究.现代化农业,2019(9):28-29. DOI:10.3969/j.issn.1001-0254.2019.09.015
LI J, GAO X, CHEN J Y, et al. Field application of microbial compound agents on potato. Modernizing Agriculture, 2019(9):28-29. (in Chinese)
doi: 10.3969/j.issn.1001-0254.2019.09.015
[9]   文娅,赵国柱,周传斌,等.生态工程领域微生物菌剂研究进展.生态学报,2011,31(20):6287-6294. DOI:10.3724/SP.J.1077.2011.00073
WEN Y, ZHAO G Z, ZHOU C B, et al. Research progress of microbial agents in ecological engineering. Acta Ecologica Sinica, 2011,31(20):6287-6294. (in Chinese with English abstract)
doi: 10.3724/SP.J.1077.2011.00073
[10]   尹莉,张鹏昊,陈伟燕,等.固定化微生物修复黑臭水体的生物技术研究.给水排水,2018,54():51-55.
YIN L, ZHANG P H, CHEN W Y, et al. Repairment of the black and odorous water by immobilized bacteria process. Water and Wastewater Engineering, 2018,54():51-55. (in Chinese with English abstract)
[11]   刘熹.固定化微生物技术在湖塘水体原位修复中的应用研究.南宁:广西大学,2015:1-18.
LIU X. Research on immobilized microbial in-situ remediation technology applied in lake water contamination. Nanning: Guangxi University, 2015:1-18. (in Chinese with English abstract)
[12]   包成龙,许晓燕,刘博文.小麦麸皮营养成分和综合利用.粮食与油脂,2014,27(8):58-60. DOI:10.3969/j.issn.1008-9578.2014.08.016
BAO C L, XU X Y, LIU B W. The nutrition and comprehensive utilization of wheat bran. Cereals and Oils, 2014,27(8):58-60. (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-9578.2014.08.016
[13]   汪琦,陈和塔,赵欣园,等.发酵麸皮对酸性含铬废水中 Cr(Ⅵ)的吸附与解吸研究.环境污染与防治,2016,38(6):24-33. DOI:10.15985/j.cnki.1001-3865.2016.06.005
WANG Q, CHEN H T, ZHAO X Y, et al. Study on the adsorption and desorption of Cr(Ⅵ) in acidic chromium containing wastewater by fermented bran. Environmental Pollution and Control, 2016,38(6):24-33. (in Chinese with English abstract)
doi: 10.15985/j.cnki.1001-3865.2016.06.005
[14]   刘志刚,李东晓,戴志东,等.基于复合微生物菌剂的黑臭河道治理.科学技术与工程,2019,19(1):284-287. DOI:10.3969/j.issn.1671-1815.2019.01.043
LIU Z G, LI D X, DAI Z D, et al. Compound microbial inoculant in treatment of black and odorous river water. Science Technology and Engineering, 2019,19(1):284-287. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-1815.2019.01.043
[15]   CHON K, LEE K, KIM I S, et al. Performance assessment of a submerged membrane bioreactor using a novel microbial consortium. Bioresource Technology, 2016,210:2-10. DOI:10.1016/j.biortech.2016.01.013
doi: 10.1016/j.biortech.2016.01.013
[16]   高云超,田兴山,潘木水,等.复合微生物制剂(CMP)对猪场污水的处理效果.广东农业科学,2004(6):82-84.
GAO Y C, TIAN X S, PAN M S, et al. Effects of compound microorganism preparation on piggery wastewater treatment. Guangdong Agricultural Sciences, 2004(6):82-84. (in Chinese)
[17]   杨小龙,李文明,曹郁生.一种复合菌制剂对富营养化污水的净化作用研究.环境科学学报,2012,32(9):2071-2076. DOI:10.13671/j.hjkxxb.2012.09.027
YANG X L, LI W M, CAO Y S. Purification effect of a compound-bacteria agent on eutrophic wastewater. Acta Scientiae Circumstantiae, 2012,32(9):2071-2076. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2012.09.027
[18]   DONG Y W, ZHANG Y Q, TU B J. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate. Brazilian Journal of Microbiology, 2017,48(3):515-521. DOI:10.1016/j.bjm.2017.02.001
doi: 10.1016/j.bjm.2017.02.001
[19]   袁林江.聚乙烯醇(PVA)固定化反硝化菌的脱氮特性.中国环境科学,1998,18(2):189-191.
YUAN L J. Denitrification characters of denitrifying bacteria immobilized by polyvinyl alcohol (PVA). China Environmental Science, 1998,18(2):189-191. (in Chinese with English abstract)
[20]   陈诚,郭俊元,周明杰,等.壳聚糖-海藻酸钠固定化菌小球处理猪场沼液.中国环境科学,2019,39(7):2812-2821. DOI:10.3969/j.issn.1000-6923.2019.07.015
CHEN C, GUO J Y, ZHOU M J, et al. Removal of ammonium from aqueous solution by microorganism cells immobilized into chitosan-sodium alginate beads. China Environmental Science, 2019,39(7):2812-2821. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6923.2019.07.015
[21]   杨萌,陈琳,赵阳国,等.固定化脱氮菌对养殖水体中氨氮控制效果研究.中国海洋大学学报(自然科学版),2018,48():42-51.
YANG M, CHEN L, ZHAO Y G, et al. Removal of ammonia nitrogen in mariculture system by immobilized denitrifying bacteria. Periodical of Ocean University of China, 2018,48():42-51. (in Chinese with English abstract)
[22]   HILL V R, KAHLER A M, JOTHIKUMAR N, et al. Multi-state evaluation of an ultra filtration-based procedure for simultaneous, recovery of enteric microbes in 100-L tap water samples. Applied and Environmental Microbiology, 2007,73(13):4218-4225. DOI:10.1128/AEM.02713-06
doi: 10.1128/AEM.02713-06
[23]   RIVIèRE D, DESVIGNES V, PELLETIER E, et al. Toward the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 2009,3(6):700-714. DOI:10.1038/ismej.2009.2
doi: 10.1038/ismej.2009.2
[24]   李秋芬,有小娟,张艳,等.象山港中部养殖区细菌群落结构的特征及其在生境修复过程中的变化.中国水产科学,2013,20(6):1234-1246. DOI:10.3724/SP.J.1118.2013.01234
LI Q F, YOU X J, ZHANG Y, et al. Change in the characteristics of bacterial community structure during habitat restoration of aquaculture sites in Xiangshan Bay. Journal of Fishery Sciences of China, 2013,20(6):1234-1246. (in Chinese with English abstract)
doi: 10.3724/SP.J.1118.2013.01234
[25]   窦妍,赵晓伟,丁君,等.应用高通量测序技术分析北方刺参养殖池塘环境菌群结构.海洋与湖沼,2016,47(1):122-129. DOI:10.11693/hyhz20150300088
DOU Y, ZHAO X W, DING J, et al. Application of high-throughput sequencing for analyzing bacterial communities in earthen ponds of sea cucumber aquaculture in northern China. Oceanologia et Limnologia Sinica, 2016,47(1):122-129. (in Chinese with English abstract)
doi: 10.11693/hyhz20150300088
[1] Xuan CAO,Xiaodong ZHENG. Transcriptomic difference analysis of Meyerozyma guilliermondii in response to salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 400-406.
[2] LIANG Yanting, LIU Yuncai, GAO Yun, WANG Huabing, XU Yusong. Diversity analysis on gut microbiota of Glyphodes pyloalis Walker under high temperature[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 215-222.
[3] LI Weicheng, YANG Huimin, GAO Guibin, WEN Xing, SHENG Haiyan. Effects of mulching on soil bacterial community in the small- to medium-diameter Phyllostachys edulis plantation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 49-58.
[4] Ye Xiaoqian, Zhao Zhonghui, Zhu Quanwu, Wang Yingying, Lin Zhangxiang, Ye Chuyu, Fan Longjiang, Xu Hairong. Entire chloroplast genome sequence of tea (Camellia sinensis cv. Longjing 43): a molecular phylogenetic analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 404-412.